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FOREWORD

This report was prepared by Lockheed Missiles and Space Company, Inc.,
Palo Alto Research Laboratories, 3251 Hanover Street, Palo Alto, California,
in partial fulfillment of the requirements under Contract F33615-76-C-3105.
The effort was initiated under Project 2307, "Research in Flight Vehicle
Structures," Task 2307N102, “Research in the Behavior of Metallic and
Composite Components of Air Frame Structures." The project monitor for
the contract was Dr. Narendra S. Khot of the Structures and Dynamics Division
(AFWAL/FIBRA).

The report covers work under the contract concerned with the efficiency
of different discretization procedures. The technical work under the contract
was performed during the period June 1976 through October 1980. Review reports
were submitted in October 1980 and the final report in March 1981. Results
from separate but related efforts are included for completeness. These include
the description of an element configuration developed under the LMSC independent
resga;cg program and a summary of the state-of-the-art performed under contract
with AFOSR.

The other reports published under this contract are "Imperfection Sensi-
tivity of Optimized Structures," (AFWAL-TR-80-3128), "Panel Optimization with
Integrated Software (POIS)," (AFWAL-TR-80-3073, Vol I and II), "Design of
Composite Material Structures for Buckling, An Evaluation of State-of-the-Art,"
(AFWAL-TR-81-3102), "Supplementary Studies on the Sensitivity of Optimized
Structures," (AFWAL-TR-81-3013).
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Section I

INTRODUCTICN

The structural response to a given environment is determined by the differen-
tial equations of motion of deformable bodies. MNumerical solutions of such
equations are discussed in the following for the case in which all derivatives
with respect to time can be discarded so that the equations degenerate into a
set of static equilibrium equations. Additional questions that may arise in a
dynamic environment are mot considered. We pay special attention to the
behavior of shell structures. For such structures, the mathematical problem
is defined by a set of non-linear partial differential equations of elliptic
type or by an equivalent energy principle. Analytic solutions of such problems
for a reasonably large class of structural configurations are not within the
realm of the possible. Consequently, the mathematical problem is recast into
a mumerical problem for solution on the computer. This transformation can be
applied to the equilibrium equations or di_t;ectly to same energy expression.

The output from the computer consists of a sequence of numbers, in same way
representing the functions satisfying equilibrium equations and boundary condi-
tions. If the solution is represented by a linear superposition of a set of
"hasis functions”, then the components of the output vector consist of the
wefficients in this series. This is the case if we use the Galerkin or
Rayleigh-Ritz procedures. 1If we use the finite difference or finite element
procedures, the solution function is represented by its values at a number of
discrete locations within the structure. Because these discretized methods
are resdily applied in a computer program for a general type of structure,

they have been gaining popularity. This applies in particular to the finite
element method. The discretized methods make use of numerical differentiation
and numerical integration. A review of these operations here is intended to
serve as a background to a discussion of the different options that are
availble for numerical analysis of shell structures.




Section 11

NUMERICAL DIFFERENTIATION

Numerical differentiation consists of the replacement of the derivatives of a
function by difference quotients (or finite difference expressions). Such
expressions are generally based on local polynomial approximations. A truncated
Taylor series can be used for this purpose. In the one-dimensional case

(one space variable) the series is of the form

2 n
£ = £0) +x€'(0) + £ +. . . XM (o) +r (1)

where the prime denotes differentiation with respect to x. The remainder
R represents the sum of the terms that were excluded when the series was
truncated after the (n+l)th term. It can be shown that (see Reference 1,
for example) that

xrx+l
R _<_-(—-D—m !F

where (2)

F=mMax g0+ Dy

£)}; 0 <E<x
This bound on the truncation error is useful for estimates of the accuracy
of the cutput vector.

Finite difference expressions may be derived at a number of control points.
First, the function values at a number of discrete node points are expressed

in terms of the derivatives at the control points by use of a suitably truncated
Taylor series. In Equation (1), it is assumed that x = 0 at the control point.
The procedure leads to a set of linear equations and through solution of this
system, expressions for the derivatives at the control point are obtained in
terms of the function values at the selected node points. The number of node
point values included must be equal to the number of terms of the Taylor

series. In the general case the highest order derivative so determined will




be of first order accuracy, i.e., the error E = 0(h)., If ex-
nansion is commlete throush derivatives of nth order, the kth derivative (k<n)
will be of order (n - k + 1}).

Figure 1 illustrates how finite difference expressions can be derived in a
two-dimensional space. A Taylor series approach gives us

= . 12, . 1.2 ...
£lat N T (£ 4 aggf' + B8 + 30548" + ayyB34F' + 380577 + - 0 (e ) (3)

where a prime indicates differentiation with respect to the X, coordinate,
and a dot differentiation with respect to the X, coordinate.

If derivatives up to the second order are to be determined, it is sufficient
to specify for each control point a set of six neighboring node points

(Ni to Ni+5) . By applying Equation (3) at each of the six node points, we
obtain the equation system

- -
12 1,2
£ Loy By 315 %1381 73 £5
12 1,2 ,
£, 1 oayy Byy 325 24825 385 £
12 1,2 .
£3 1 ayy B3y 735 934835 2834 £5
- (4)
12 1,2 "
£, 1 agy Bgy 73945 %34y 245 £5
12 1,2 .
£5 1 a5y 655 3%5 %54P5y 7Ps; £5
12 1,2 .
\fs 1 o5 Bey %3 %3fs3 263 £
- -
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The solution of the equation system yields a set of finite difference expres-
sions for the derivatives at control point j. The error bound for the second
order derivatives are E = O(h). The first order derivatives are of second
order accuracy. If one or more of tha second order derivatives is left out,
the remaining derivatives may be expressed in terms of five nodal values.

Then the first order derivatives are only of first order accuracy and the
expressions for the second order derivatives may be meaningless, E = O(ho) .
Since there are four different third order derivatives, we must include ten

nodal function values in order to raise the accuracy by one order [(E = O(h3)
for the first and E = O(hz) for second order derivaties].

Linear, quadratic or cubic expansions are obtained if all derivatives up to
first, second or third order are retained. Bilinear, bicquadratic or bicubic
are expansions including all derivatives that are at most of first, second
or third order with respect to any one of the two space variables. It may be
noticed that the order of accuracy of bilinear expansion remains the same as
that of the linear expansion and a similar statement holds for higher order
expansions.

The nodal values (degrees of freedam) need not be restricted to function
values. A higher order derivative at a control point can be expressed in
terms of lower order derivatives at the nodal points. These lower order
derivatives are then included as support for the local approximation of the
solution. Such procedures are discussed in Reference 2, for example.

The location of the control points in relation to the node points can be
chosen so that the coefficient becames zero far the lowest order terms among
those that are discarded. In that case the accuracy of the approximation

is raised by one order. For demonstration we consider the configuration in
Figure 2.

The degrees of freedam of the system are the function values fl and fz and the
first order derivatives Bl and 82 at the node points. The finite difference
equivalent of the secornd arder derivative at same point in the interval is

5
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determined from a one-dimensional Taylor series

2 3 4 .
_ X . X X iv
f(x) = fo + xfc') + 3 fo' + e fé" + 37 fo + ... (5)
It follows that
x2 x3 iv
' = " " ——
f(x)—f‘.')+xf0 +ch'> +6 fo+... (6)

~ h
— hx I‘——/’(/“q’)————-
X

o (o) '
CONTROL
NODE 1 POINT NODE 2

Figure 2. One~D Finite Difference Grid

For simplicity we drop the subscript zero referring to the control point.
The finite difference expressions are obtained fram the equation system

2 3 4 .
£+ h(l ~ a)E" +g_ (1 - a)fr +%- Q-+ -Vt

28 2

22 33 44
(7
hz 2 h3 3civ
£ +h(l-a)f'|+.2_(1_u) f”""’G—(l—u)f -6,

h22 h3a3 iv
£' - hof'' + Zg-f£'1 - - =8

1




The solution of this equation system includes

£ = {(6(1 - 2a) (f2 - fl) - 2h(2 - 3u)f2 + (1 - 3<:t)fl

=4

2 (8)

-8 (6a® - 6a + 1) £V + o3
If o is chosen so that the coefficient for £.V vanishes, i.e.,
60> - 6a+1=0o0r a= (L% 1//3)/2
then the relative error in the second order derivative (Equation 8) is of

third order. The function y = 6a° - 6a + 1 is shown in Figure 3. Points at
which the first term in the error vanishes are sometimes referred to as

stress windows.

~

¥

0 le— 1 . 1

“ T | 3

R (-
>

o 0.5 10

Figure 3, Error Function

The possible advantage of strategic positioning of the control points is
further illustrated by the two finite difference schemes shown in Figure 4,
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Figure 4. Two Finite Difference Schemes

If function values only are used as freedoms and the nodal spacing is uniform,
the stress windows are located at the node points for even order derivatives
and halfway between them for odd order derivatives. With Scheme A we find

£'= -;;5 (£, - 2+ £)) - 1 n’eY ?
ard with Scheme B

£ = f (6 = £yyp) - phE

£ = ;12- (f43/2 = £41/2 = Eoy2 * £.3/) - x WL (10)

For a first order derivative of first order accuracy we need (in the one-
dimensional case) two node point values. The first of Equations (10) gives
the derivative of secord order accuracy at the stress window, halfway




between two nodes. On the other hand, if we derive a formula for the first
derivative at a node point fram two function values (forward or backward
differences) we find that the expression is of first order accuracy, i.e.,

f'=f-2-ﬁf—l--%f"+... (11)
By use of three node points we can define the first order derivative with
second order accuracy at any point. If the control point is placed at the
node point in the middle the derivative is defined by the first of
Equations (9). That is, the error is four times larger than it is in the
derivative at the stress window in the two point scheme. On the other hand,
the forward and backward difference expressions are still of second order
accuracy

f':%ﬁ(qfl-fz)+%-h2f"'+... (12)

It can be shown that first order derivatives determined from a uniform
three point scheme are most accurate (of third order) at stress windows,
located symmetrically at a distance of h/2¥3 fram the midpoint node.

A camparison of second order derivatives fram three- and four-point schemes
gives similar results. Even order derivatives in a uniform grid are most
accurately computed if one node coincides with the control point and the
remaining nodes are placed symmetrically around this point. The location
of stress windows in the case of nonuniform spacing is discussed in

Reference 3.




Section III

NUMERICAL INTEGRATION

The purpose of numerical integration is to compute an approximate value of

b
[ £(x) ax .
a

In order to achieve this we divide the range of the integral a,b into a
number of small subintervals. If the function values are determined at the
midpoints of intervals (see Figure 5a), the integral can be obtained by
use of the so-called rectangle rule, i.e.,

7 > (13
i f(x) dx = h EE; £ )
where N is the number of intervals. If the function values are determined
at points of division between the intervals (including the end points a,b},
then we can use the trapezoidal rule illustrated in Figure 5b.

b
JEx) @ =h(l/2 £, + £, + £, ... £+ 1/2£) (14)
a

Figure 5. Numerical Integration Schemes

aabibiing
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It is shown in Reference 1 that both these methods are of second order accuracy.
The rectangle rule is somewhat more accurate with the error bound

2
E < |?L-_34Lh_.|fn (E)

;a<E<h, (15)
while the error bound for the trapezoidal rule is

2
e 228" 150 () a < e (16)

A nunber of procedures of higher accuracy have been proposed (Euler-Mclaurin,
Stirling). The Newton-Cotes series of integration formulas are based upon the
passing of a polynomial through a sequence of function values and integration
of this polynomial over the subintervals. Since the trapezoidal rule is
based on a linear approximation over the subintervals, it may be considered

‘ as the lowest order method in the Newton-Cotes series. A Newton-Cotes

| formula of third order accuracy is obtained if we use second order poly-
nomials for interpolation between node points. With uniform spacing, this
mamber of the Newton-Cotes family is well known as Simpson's formula

+ 2f, + ... Af

1 2 +f) (17)

b
[ £60 ax = n-1 n

a

wj>

(fo + 4f

We notice that use of Simpson's formula requires that the number of sub-
intervals is even. Higher order Newton-Cotes formulas are increasingly
restrictive with regard to the permissible number of subintervals.

A method of special importance in finite element analysis is the Gaussian
Quadramre. In this procedure strategic positions are established for the
points at which the function is to be determined. As an example we will
show here how a two-point integration scheme is derived. If the function
values at x = tal are fl and f2 with x = 0 at the midpoint of the interval,
we can approximate the function by

£. + £

X + F2(x) + R (18)

11




where F, (x) is a function of second degree in x and vanishes at
x =% afk and R is a power series beginning with the third order term.

Due to the symmetry, the integral of odd power terms vanishes and consequently
L we can write

£, + £ 2.2

f==s2 40 (e - x%) +C2(a)x4 + (19)
and
8/2
2 3,21 5
_szf(x) a = 5 (£ + £) + 2 (a 3 *Cy ()2 /5 + ... (20)

Choosing to determine the function values at the coordinates corresponding
to a = * 1/2/3 we obtain b

/2
[ £(x) ax = 2(0.5¢; + 0.5£,) (1 +E). (21) )
/2 !

The relative error E = Cild/(f1 + f,) where C is a constant. The method
integrates any polynomial up to the third order exactly. The points corre-
sponding to a = +1/2/3 are referred to as the Gaussian points. Integration

\ schemes of higher order are obtained by inclusion of additional Gaussian
points. Tables are available that give the location of the Gaussian points
and corresponding weighting factors for the function value., For exact
integration of a jth order polynomial where j is odd we need (j + 1)/2
inteqgration points. Sametimes polynamials are integrated with fewer points
although this permits the existence of positive definite functions whose
integral over the damain vanishes. The procedure is then referred to as
reduced integration.

We notice that the position of the "Gaussian points" coincides with the stress
windows for the second order derivative in the case with displacements and
rotations defined at the end points of the interval (Figure 2). The rectangle

12
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rule, identical to the use of a Gaussian Quadrature over the individual
intervals with only one integration point in eaclh, integrates only first order
functions exactly.
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Section IV

ENERGY METHODS

The equations of equilibrium of a deformable body can be derived by considera-
tion of the balance between elastic forces, body forces and possible surface
tractions in an infinitesimal volume element. By use of the constitutive
equations, relating strains to stresses, and the kinematic relations, defining
strains in terms of displacament components, the equilibrium equations can be

. expressed in terms of the displacements.

If the loading is conservative and if only elastic deformation is considered,
the condition stated by the equilibrium equations is equivalent to the require-
ment that g'xe sum of the stored strain energy and the potential energy of the
applied force system equals zero during a small virtual displacement. Based
on this theorem of virtual work we can derive the theorem of minimum potential
energy. According to this theorem:

Among admissible displacements, the configuration
correspording to equilibrium is such that the total
potential energy is stationary; for stable equililwium
it is at a minimum,

That is
§(U+wW) =0 (22)
where U represents the strain energy and W the potential energy of the
external forces, i.e. the negative of the work done by these forces during
deformation. Admissible are all displacements that satisfy continuity and

essential boundary conditions. The strain energy U can be written

U=1/2 [ ¢ [E] € aV (23)
v




where ¢ represents a vector of strains and [E] is the (3 x 3) matrix of
coefficients in the constitutive relations. The potential energy of the
external forces is represented by

w=-IU-TdS (24)

Sp

where T represents the camwponents of surface traction and Sp the part
of the structure on which such tractions (external forces) are defined.

The theorem of minimum complementary enerqgy is an alternative formulation
also derivable from the principle of virtual work. This theorem states that:

Among all admissible states of stress the configuration

corresponding to equilibrium is such that the complemen-
tary energy is stationary; for stable equilibrium it is

at a minimum.

That is
S(U* + W*) =0 (25)
where
ur = 172 [ o[E] Yo av
v
and
Wt = - [ Touds (26)
Sy
where SU is the surface upon which displacements are defined and T the

corresponding tractions (reactions). Admissible are stress states that
satisfy continuity and boundary conditions on surface tractions.

15
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Multifield energy principles including both stresses and strains as free
variables can be derived based on the relation

[oedv=U+uU* (27)
v
The expression for the energy is in mathematical terms referred to as a
functional. That is, it defines a scalar value U corresponding to a given
function. In analysis of plane stress in plates or in a three dimensional
analysis, the functional contains derivatives up to the first order only.

In beam analysis or in analysis of plates and shells certain approximations
result in the introduction of second order derivatives into the energy
functional. Displacements at any point in the structure are expressed in
terms of displacements and displacement derivatives at a reference surface.
As a oonsequence, the problem is reduced to be one-dimensional (response
quantities are functions of one spatial coordinate only) for the case of
beams and two-dimensional for plates and shells. For beams then, the equa-
tions of equilibrium became ordinary differential equations, while for plates
and shells they remain partial differential equations. The reduction of the
number of spatial coordinates can be obtained because the structure is thin,
allowing the approximations:

(1) normals to the reference surface remain straight and normal
during deformation, and
(2) the transverse normal stress is negligibly small.

In a second order theory, approximately accounting for transverse shear
deformation, the normals remain straight but are allowed to rotate in rela-
tion to the reference surface.

The assumptions on which a shell theory is based allows the integration through
the thickness so that the strain energy is represented by a surface integral.
The strain energy is expressed in terms of a six-component vector of reference

16
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surface strains and changes of curvature and the (6 x 6) matrix of coefficients
in the equations relating those to the vector of force and moment resultants.,

Solutions to the equilibrium problem are obtained by application of one of the
energy theorems after numerical analysis procedures has been used to express
the corresponding functional in terms of a finite number of degrees of
freedom. Another possibility is to seek numerical solutions to the equivalent
differential equations of equilibrium.




Section V

GLOBAL FUNCTION APPROACH

In this section we briefly discuss the methods in which the solution function
is represented by a linear superposition of basis functions. These are
generally allowed to assume nonzero values over the entire domain (except as
restricted by boundary conditions). We refer to such a procedure as a

global function approach in order to emphasize its distinction from the finite
element method to be discussed later.

The Galerkin Method has been widely used to yield approximate solutions to
differential equations in structural analysis as well as in many other

applications. The method is applicable to partial as well as to ordinary
differential equations. For simplicity, we write the equation in the form

L{u) =0 (28)

where L is a differential operator and u represents the displacement field.
We seek a solution in the space of all trial functions defined by

Uy = ﬂ 3n%n (29)
n=1
where the basis functions, ¢ s Fepresent kinematically admissible functions
(i.e., they are continuous and satisfy given boundary conditions). The
ccmponents of the output vector are the a. Applying Galerkin's method,
we determine the a, through solution of the equation system:

[ L ¢ av =0
v

N (30)
i.e. \jI'L(rél an¢n) %m dv=0form=1,N.
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If u = UN represents the solution of this system with N basis functions,
convergence to the correct solution is implied if the norm

oY - u*|| ~0as N+ (31)

where u* is the solution of the mathematical problem L(u) = 0. The norm of a
function defined on the damain V can be chosen as

| a] ] =‘I,uzdv (32)

We will return below to the requirements for convergence with increasing
value of N.

The energy methods can also be used directly for construction of a solution
to the eugilibrium problem in terms of a linear combination of global
functions. One such procedure is the Rayleigh-Ritz Method in which the
trial functions

N
N = 21 a_o_ (33)
n=

are substituted into the expression for the total potential energy. The
basis functions ¢ are required to satisfy essential (displacement) boundary
corditions. The unknown coefficients a  are determined through minimization
of the total potential energy. Natural boundary conditions are automatically
satisfied through the minimization.

A proof for convergence of the method is provided in Reference 4. The condi-
tions for convergence to the correct solution are

(1) For functionals containing derivatives up to the nth order it is
required that derivatives of the trial functions up to the (n-1)th
order are continuous. This is a sufficient, but as we will see
later, not always necessary continuity condition.
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(2) The set of trial functions must be complete. That is, the

set of trial functions must contain a sequence of functions
that in the limit approaches any admissible function
arbitrarily close.

(3) Essential (displacement) boundary conditions are satisfied.

The Galerkin method discussed above is in one respect an extension of the
Rayleigh-Ritz method. It is applied also to differential equations that
cannot be derived through a variational approach. It is shown in Reference 4
that the Galerkin method when applied to variational problems with quadratic
functionals is identical to the Rayleigh-Ritz method. This establishes
convergence of the Galerkin method within that range. For other cases,

it appears that the assumption of convergence is based on conjecture.

Before the introduction of the digital computer, the Rayleigh~Ritz and Galerkin
procedures were frequently applied with trial functions chosen on an intuitive
basis. Very few terms were included. The use of complete sequences and
convergence control became popular with the arrival of high-speed computers.
With the demand for programs of general-purpose type, these methods were
gradually abandoned in favor of finite difference and finite element methods.
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Sectioi. VI

FINITE DIFFERENCE METHODS

The finite difference methods are based on replacement of derivatives by finite
difference expressions as discussed above. The different expressions can be
introduced into the equilibrium equations or in some energy expression. In
the former case an algebraic equation system is directly obtained, in which

the node point displacements and possibly rotations are the unknowns and each
equation expresses equilibrium at one of the control points. The number of
equations must be equal to the number of degrees of freedom of the system,

Many examples of application of this procedure are given in the literature.

In Reference 5, it is applied in an analysis of column buckling.

The problems involved in practical finite difference analysis are much the

same if finite difference expressions are used in combination with the energy

approach. Since this approach presently is of more direct interest to us, '
the discussion of the direct use of the equilibrium equations will be

restricted to the problem of convergence. Over the years many efforts have

been made to show that the method converges with decreasing nmode point spac-

ing to the solution of the differential equation, i.e.,

o - u*|| >0 ash 0 (34)

where Uh is the finite difference solution corresponding to a node point spacing
of h.

Rigorous mathematical proofs have been presented for special cases, but

due to the diversity of differential equation forms, boundary conditions and
shapes of the damain, it appears to be difficult to establish convergence

in the general case. However, mathematical rigor has never been the trade-
mark of engineering analysis. Often the assumptions and simplifications in
modeling the structure are of such a nature as to make the quest for mathe-
matical rigor rather extravagant. If the application of apparently reasonable
methods had been deferred in anticipation of rigorous proofs of uniqueness
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and convergence, prodress in engineering science would have been considerably
retarded.

The finite difference approach appears reasonable from the point of view of an
engineering analyst. One difficulty related to the convergence proof is that
the error term in the Taylor series expansion contains a derivative [fm]‘] (&)
in Equation 2 of the solution function itself. Witn same feeling for the
physical behavior of the system, the analyst may assume that the solution
vector varies continuously with the input data (]fm1 () |<cC ||T]}]) so that
the truncation error can be expressed in terms of the loading function rather
than in terms of the solution. Whenever the assumption that the solution
varies continuously with the input data is violated, finite difference formula-~
tions may lead to spurious results. Consider, for example, the case of a
beam in bending. We substitute the second order derivative by a three-point
central finite difference expression except at one internal point where we
use either a backward or a forward difference expression. The beam so defined
has a link at the point in question.

It appears reasonable to accept the proposition in Reference 6 that the finite
difference approach in solution of differential equations converges toward

the correct solution if:

{1) the local truncation error vanishes with the grid size
(2) for small values of h the solution varies continuously
with the input data (loads).

The second requirement will exclude a spurious solution such as the one for
the beam discussed above.

The use of finite differences in a variational approach is discussed in
Reference 7 on page 182. The finite difference expressions are introduced
directly into the energy expression and the potential energy is minimized
with respect to the values of nodal displacement components. The convergence
of the procedure is not discussed in Reference 7. We may appeal to equiva-
lence with finite difference solution of the Euler equations discussed above.
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A rigorous and general proof of convergence does not appear to be available. :
It will suffice for us that whenever the procedure has been applied to a i
case with a known solution, it has been found to converge toward that solution.

The advantages of introducing the difference quotients into the potential
energy expression rather than into the equilibrium equations are that the
coefficient matrix becomes symmetric and that the natural boundary conditions
are automatically satisfied. For a simple demonstration of the method, we
will consider the buckling of a column with uniform cross-section (compare
Reference 5, page 283). The buckling load is defined as the load level at
which the second variation of the total potential energy vanishes. Hence,

L
25%v = 62 ] [EI(w,xx)z
0

- Pw, ) %] ax = o% (35)
In order to take advantage of the stress windows as discussed above [see
Equations (9) and (10)], we will determine w,, at midnodes and Wiy At 1ode
points as shown in Figure 6. t

-0
-0
L0
L0

— : ——]-——-o0P
N\ [ i 1 A
x ' X X X

X NODE POINTS
CONTROL PTS FOR W,y

O CONTROL PTS FOR W,

Figure 6. Finite Difference Scheme for Column Buckling Analysis
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2

Then (w, )% can be integrated by use of the rectangle rule, and (w, )° by
use of the trapezoidal rule. We have
2 o,
and
N-1
2.0 1 _ 2 1 2
Jw, )@ = 3 (wy = 20 +w)  +h iz=:2 5 Wiy = 2w 4w )

(37)
2

+ 35 (g = 2y + gy
Fictitious points (corresponding to Wy and Wy +1) have been introduced so that
the second order derivatives can be determined at the end points. We could
instead introduce forward and backward derivatives at these points or add
the rotation at the end points as a freedom. Whenever energy methods are used,
the control points at which derivatives are required coincide with the integra-
tion points at which the energy density is defined.

After the number of uniformly spaced node points have been chosen, we can
form a hamogeneous equation system in which P appears as the eigenvalue
parameter. Solutions, given in Reference 5, are shown in Table 1.

TABLE 1
COLUMN BUCKLING LOADS

Number of Nodes Pcr )
on Half Column (i) Critical Ioad / [EI(m/L)“]

3 0.9495

4 0.9774

5 0.9872

7 0.9943

9 0.9968

11 0.9979

© 1.0000




r—————-—————————-——-—-———

Since the finite difference expressions as well as the numerical integrations
are of second order accuracy, we expect the error in the solution to be
proportional to the square of the spacing between node points if the grid is
fine enough so that fourth order terms in the error are insignificant.

(We have amitted the step showing that natural boundary conditions are satisfied
to the same degree of accuracy.) As the grid spacing equals 1/2(i-1), we obtain
fram the first two results in the table above

2
3= ¢ (=] = P - 0-9%5

o]
I

2 (38)
L —
4=cl———2(4_1)] = Py - 0.9774
Dividing the first of Egations (38) by the second, we obtain an equation from

which we determine P = 0.9997. 1In view of the fact that the values of P

CR CR
for 3 or 4 points were rounded to four figures, this is as close to the exact

solution as we possibly can expect and thus verifies the assumption of second
order convergence. First order derivatives from two nodal points and second
order derivatives fram three are generally of first order accuracy. A second
order accuracy is obtained by a favorable choice of nodes and integration
points. This type of phenamenon is referred to as superconvergence in

Reference 8. By use of two solutions corresponding to very coarse nodal
spacing, and the assumption of second order accuracy, we are in this case
able to predict a very accurate result through extrapolation. This method
is referred to as Richardson's extrapolation.

In the two-dimensional case, it is more difficult to utilize stress windows

in order to obtain superconvergence. We will briefly discuss the problems
involved in the definition of efficient finite difference schemes for
rectanqular nets with uniform spacing. (In the case of nonuniform spacing,

it is possible to make use of the same expressions by mapping the shell upon a
domain with a suitable definition of a distance.) Examples of two-dimensional
finite difference schemes are shown in Figure 7. The scheme used in Figure 7a
defines the inplane displacements at half-stations. A rectangular integration
scheme is used, and the strain energy is defined at the w-node at the center
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Figqure 7. Two-D Finite Difference Schemes




of the figqure. This point then represents a stress window for bending as well
as membrane strains. There is one obvious weakness in this s ™ ne, The l
membrane strain €t for example, at the integration point must be obtained '
as an average of its values at points A and B. .While this operation is

still of second order accuracy the coefficient of the error term is increased.

This problem is eliminated in the modified half-station scheme introduced in
Reference 9 by Noor (Figure 7b). However, both the half-station schemes shown
here are samewhat inefficient for nonlinear or stability analysis. It is
sufficient for illustration of this problem to consider a straight beam element
with

2

_ 2
€, = Uy + 1/2(u.x + w,x) (39)

For definition of the membrane strain €ygr WE need to express both the spatial
derivatives u,, and w, X at the same integration points. If w is defined at
the node points and u at half-stations, it is not possible to use the most

favorable expression for u, % as well as for Wiy

By introduction of the whole-station, illustrated in Figure 7c, both these
problems are eliminated. With the membrane and bending energies integrated
over different sets of integration points, it is possible to make use of the
stress window for u,, as well as for Wiy This results in much better
convergence for the buckling load as illustrated in Table 2.

TABLE 2

BUCKLING LOADS VERSUS GRID SIZE FOR
AXTALLY LOADED CYLINDRICAL PANELS

Grid Half-Station Whole Station
Axial x Circumf. Figure 7a Figure 7c
10 x5 350 825
12 x 6 52% 875
16 x 8 770 925
20 x 10 865 945
32 x 16 960 960




We conclude from the results in Table 2 that for similar accuracy we can use
almost twice as large grid spacing with the whole-station scheme. Also, it
appears that the error in both cases varies quadratically with the grid spacing.
However, the eigenvalues were not camputed with sufficient accuracy to give

reliable information about the rate of convergence.

Unfortunately, the whole-station scheme becames less efficient if the constitu-
tive relations contain terms that couple force and moment resultants (such as
eccentrically stiffened shells). This problem occurs because the strain energy
then includes products of first order derivatives of in-plane and normal
displacements. It appears possible to circumvent this problem, ut since the
interest largely has shifted to finite element formulations, this search has
not been vigorously pursued.

Another problem is related to the integration of the membrane strain energy
by use of the rectangle rule, or as dbserved above, by Gaussian integration
with only one point. A polynomial that matches the function values at all
four corners must include at least one second order term. Therefore, this is
a case of reduced integration allowing a nonzero deformation pattern with
vanishing strain energy. This pattern is defined by u = cy¥Xy and v = c,xy,
where x and y are space coordinates with x=y=0 at the integration point.
Such a deformation is referred to as a mechanism, and if allowed, sometimes

leads to spurious solutions. The deformation pattern is usually prevented
by displacement constraints on shell boundaries and therefore it is somewhat
questionable whether it is worthwhile to remedy the situation by use of
integration with four Gaussian points.




Section VII

FINITE ELEMENT ANALYSIS

In the previous paragraph it is demonstrated that for maximum efficiency in a
finite difference discretization it is important to choose the position of
each control point (or integration point) judiciocusly. It is important also
that the functions and their derivatives are expressed in terms of the function
values at a suitable set of neighboring nodes. The major flaw in the whole-
station scheme of the previous section was that both factors in terms
representing coupling between bending and membrane action cannot be represented
by the most efficient expression at the same integration points.

Continuing the search for a better formulation we may consider the scheme
illustrated in the one dimensional case in Figure 8. One integration interval
is shown in the figure. According to Equation (8) the second order derivative
of the lateral displacement is of third order accuracy at the integration
points. The first order derivative of the lateral displacement based on the
same four freedomg is at least of third order accuracy anywhere in the
interval. Based on three function values, at the midpoint and at the end ]
points of the interval, first order derivatives (of inplane displacements)
are of third order accuracy at the Gaussian points for two-point integration
[compare the discussion following Equation (11)]. As a consequence all
quantities included in the strain energy are of third order accuracy at the

two Gaussian points.




-
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t/(zfi) L/ (273)
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Integration points

O

¥ Node points for lateral displacements
and their first order derivatives

O Node points for inplane displacements

Figure 8. A Finite Difference Scheme with Third Order Accuracy '

Characteristic for the scheme in Figure 8 is that the derivatives at all
integration points within any integration interval are based on the same
systeam of neighboring nodal values, and that no nodal values outside of the
integration area are engaged in the formulation. Due to these properties the
formulation adheres in the strictest sense to the rules that define a

finite element procedure. However, these rules are samewhat artificial and

there appears to be no meaningful distinction between the finite element and
the energy based finite difference analyses. In Reference 10 Felippa refers
to this finite difference procedure as finite elements with extended support
because the energy density at the integration points is expressed in terms of
nodal displacement freedames outside of the closed domain of the element.

We may refer to configurations that satisfy the stricter rule as self-contained

elements.

It may be noticed at this point that the finite difference formulation for the
membrane energy in the two-dimensional scheme is a self-contained finite
element. In the berding part on the other hand the energy expression is based
on freedoms at nodes ocutside the element boundaries.
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It is clear then, that the finite element method could have been derived
through a specialization or refinement of the finite difference energy method.
As will be seen in the following it could also have been the result of a
specialization of the Rayleigh-Ritz method. In either case, it would have
been directly applicable for solution of any set of ordinary or partial
differential equations derivable from a potential. However, in contrast to

the Rayleigh-Ritz procedure and the finite difference method the finite element
method was originally derived by means of physical and largely heuristic
considerations in the field of structural mechanics rather than in the field
of applied mathematics. As an afterthought the method was given a mathem—

atical interpretation (Reference 1l). This led to considerable refinement
of the method and made possible the extension to problems outside of the
field of structural mechanics.

The mathematical interpretation of the finite element method is based on the
Ritz principle. While the heuristic mechanical approach may have great appeal
to many engineers, the best understanding of the method, its scope and its
convergence properties is obtained if it is presented as a special form of the
Rayleigh-Ritz method, much in the same way as in the book by Strang and Fix
{Reference 6). From this point of view, the finite element method entails the
definition of a set of trial functions, camplete in the sense that it contains
at least one function arbitrarily close to any admissible solution (displacement
field). The solution of the problem is represented by that member of the set
of trial functions which renders the functional (energy expression) stationary.
Typical for the finite element method is that the trial functions are obtained
as a linear cambination of locally defined basis functions. That is, each

basis function is zero over the major part of the domain. The advantage with
this arrangement is that most of the basis functions are uncoupled, and thus,
the coefficient matrix of the final equation system has a relatively narrow
bandwidth. Also, the system is generally well conditioned.

3
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Section VIII

ONE~-DIMENSIONAL PROBLEMS

For the purpose of defining local basis functions, the domain is subdivided
into a number of intervals or subdomains called finite elements. Once the
domain has beer =3 divided, the unknown function within each element can be
expressed, for «:ample, in terms of local power series with unknown coefficients.
Each local power series is constrained by the condition that at the endpoint
of the interval its sum equals the discrete value of the solution functions

f; at corresponding node point. The nodal values of the function and the

free coefficients in the power series are the degrees of freedom of the system
with respect to which the functional is minimized. If additional constraints
on these freedom are introduced as dictated by boundary conditions, the trial
functions so obtained form a complete set of admissible functions. With a
fixed subdivision, a mesh, the finite element method properly applied would
converge with increasing order of the local approximations. In such a case
we have p-convergence. If the mesh is coarse, a large number of terms may be
needed in the power series, then the band width of the equation system becorées
large and also the system may become ill-conditioned.

A more common practice is to use a fixed form of the local shape functions.

R NP

In that case h~convergence is obtained with gradually refined mesh spacing. i
Or rather, the mesh is made fine enough s¢ the analyst feels reasonably
certain of obtaining a solution of satisfactory accuracy.

In the simple one-dimensional case with only first order derivatives the
basis functions may be linear as shown in Figure 9. The value of o is equal
to unity at node n and zero at all other nodes.
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It is clear then, that the finite element method could have been derived
through a specialization or refinement of the finite difference energy method.
As will be seen in the following it ocould also have been the result of a
specialization of the Rayleigh-Ritz method. 1In either case, it would have
been directly applicable for solution of any set of ordinary or partial
differential equations derivable fram a potential. However, in contrast to
the Rayleigh-Ritz procedure and the finite difference method the f_.nite element
method was ariginally derived by means of physical and largely heuristic
considerations in the field of structural mechanics rather than in the field
of applied mathematics. As an afterthought the method was given a mathem-
atical interpretation (Reference 11l). This led to considerable refinement

of the method and made possible the extension to problems outside of the
field of structural mechanics.

The mathematical interpretation of the finite element method is based on the
Ritz principle. While the heuristic mechanical approach may have great appeal
to many engineers, the best understanding of the method, its scope and its
convergence properties is obtained if it is presented as a spegial form of the
Rayleigh-Ritz method, much in the same way as in the book by Strang and Fix
(Reference 6). Fram this point of view, the finite element method entails the
definition of a set of trial functions, camplete in the sense that it contains
at least one function arbitrarily close to any admissible solution (displacement
field). The solution of the problem is represented by that member of the set
of trial functions which renders the functional (energy expression) stationary.
Typical for the finite element method is that the trial functions are obtained
as a linear cambination of locally defined basis functions. That is, each

basis function is zero over the major part of the damain. The advantage with
this arrangement is that most of the basis functions are uncoupled, and thus,
the coefficient matrix of the final equation system has a relatively narrow
bandwidth. Also, the system is generally well conditioned.
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The trial functions (with fl- = £y = 0) have the form
£ = 3 a¢ where (40)

-3y o)/ mxy ) forxy g Sxcx

0y =4 K+ 1-X/0g - %) for x, <x<x .

0 elsewhere

This set consists of all piecewise linear functions. It is complete since,
with decreasing mesh spacing (increasing N) any continuous function can be
arbitrarily closely approximated. The trial functions (but not its first
derivatives) are continuous over the domain as required by the Ritz theory.
The local power series are of the form

£, . - £
f=fi+i£ﬂ'———l- (x - x,) (41)
i+l - xi

That is they are of first order in x.
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The trial functions defined in Eq. (40) may be used to determine arbitrarily

closely the function f(x) that minimizes the functional

U= I{ F)£2, + GO E dx (42)
Where L is the total length of the domain on which f is defined and F(x),
G(x) are known functions x. After substitution of Equation (40) into
Equation (42) the integral is evaluated over each interval and summed over
the domain. Due to the local characters of the basis functions, the products
¢y, are zero everywhere if |n-m|< 1. Consequently the terms Corrdy in the
functional corresponding to F(x)£%, will vanish if|n - m|> 1, i.e., the
equation system obtained through minimization (BU/aan =0, n=2, N-1) will

be narrowly banded (tridiagonal).

In analysis of beams, plates and shells the strain energy functional includes

second order derivatives of the lateral displacements. For such problems the

Ritz theory requires that the trial functions belong to the functior. space _Ci .

That is, it is required that the trial functions, as well as their first order
derivatives, are continuous over the domajn. 1In the one dimensional case
(beam analysis) this is readily achieved if the function value as well as its
first order derivative (rotation in beam analysis) are considered as nodal
freedams. A cubic representation of the lateral displacement field can be
obtained by use of the Taylor series approach [campare Equations (6) and (7)].
Continuity requirements are satisfied since the values of the functions and

their first order derivatives at any node are common to the two elements

oonnected at the node.




An equivalent representation can be obtained by use of a set of four shape
functions defined (Figure 10) such that in each function one nodal freedom

equals unity and the other three are zero. The basis function corresponding
to the nth node is

£,.= 2 (aé, +bv) (43)

where a, is the function value and bn its first order derivative at node n.
Here a and bn represent the degrees of freedam of the system. The bending
moments and the rotations at each of the integration points can be expressed
in termms of these freedoms. The total bending strain energy is then readily
expressed in the form

_ T
v, = {g} lK]e{g} (44)

T
{g} = “an)l ’ (an)z ’ (bn)l ’ (bn)2] (45)

and K is referred to as the element stiffness matrix. Summation over all

elements gives an assembled or global stiffness matrix (see Reference 12,
for example).

Column buckling analysis includes such terms as w,i [see Equation (35)].
With a cubic representation of w this term is a fourth order polynomial,
accurately integrated by use of a Gaussian scheme with three integration
points.

The critical load for a cantilevered colum is 1/4 EI (r/L)2. A finite
element buckling analysis Of a colum with (EI)/(4L%) = 1.0 based on cubic
representation of the lateral displacement and three Gaussian points gives the
results shown in Table 3.
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TABLE 3
OOLUMN BUCKLING RESULTS

Number of. p ERROR 4
Elements, i CR E Ei
1 9.943847 .07424 .0742
2 9.874659 .005055 .0809
3 9.870620 .001016 .0823
4 9.869928 .000323 .0827
9 9.869617 .000013 .0853
With increasing number of elements the accurate solution, P, = 1r2 = 9.869604

CR
is rapidly approached. It appears that the error times the fourth power of

the number of elements is almost a constant. This would indicate that the
error is of the fourth order rather than third as expected, may be somewhat
fortuitously. With very coarse spacing the lowest order temm is not the
dominating error and with very fine spacing the accuracy may be governed by
rourd off errors. As a compromise, we base an extrapolation on the values
corresponding to 3 and 4 elaments. The assumption of fourth order accuracy
then leads to a value of 9.869612 for the critical load, i.e., the relative

error is less than 1076.

With only one element, corresponding to two elements per half-wave in the
buckling pattern, the error is still less than one percent. In engineering
analysis such accuracy is generally quite acceptable. However, with a solution
available only for one grid size the analyst does not know whether it is
within the range of acceptable accuracy. Unless a sequence of gradually
refined solutions is available he is not on firm ground.

For analysis of rings or arches it seems natural to develop curved beam

elements. In that case, the special problem of strain energy due to a rigid
body displacement, self-straining, must be considered. For illustration, an
element of a circular arch is shown in Figure 11, '
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If the circular arch is rigidly displaced a distance & in the x-direction,
the displacement components are defined by

£
]

§ sin @
§ cos ©

(46)

<
]

It is not possible with a truncated power series to represent this displace-
ment pattern exactly. As a consequence a rigid body displacement introduces
same strain energy in the element. This situation occurs whenever the
geamnetry of the element cannot be exactly represented by use of the functions
(usually polynomials) representing the displacement components.

0

p.4

Figure 11, Rigid Displacement of Curved Element

Elements with the strain energy for rigid body displacements proportional to
some power of h may still give good convergence in most applications. However,
there are cases in which the rigid body displacement of an element is very large
in comparison to the displacements corresponding to element distortion. In
such cases, h-convergence may be very slow for elements in which the rigid
body energy is not exactly zero but proportional to same power of the nodal
spacing.
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Flat elements are often used to represent curved beams or surfaces. The reason
for this approach is that it simplifies the formulation and also that it
eliminates problems with strain energy under rigid body displacement. Table 4
shows same results from a buckling analysis with cubic straight beam elements
of a ring under constant direction pressure. The critical pressure is
4ET

P = 35— (47)

CR R3
The results in Table 4 correspord to a ring with EI/R3 = 0.25 lbs/in, i.e.,
the exact solution is Pegr = 1.0.

TABIE 4
RING BUCKLING RESULTS
Number of
elements, i Error
(Over 90° arc) Pcr E Ei?
4 1.006970 .006970 .1015
6 1.002965 .002968 .1067 ¢
8 1.001641 .001641 .1050
10 1.001042 .001042 .1042 ‘

w We notice that the method now is of second accuracy (lE:i2 is constant) and that
| to achieve samewhat less than one percent error it is necessary to use four
elements per half-wave in the buckle pattern. Use of Richardson's extrapola-
tion based on second order accuracy with 8 and 10 elements leads Peg = 1.00002
1bs/in.

As long as each element is self-contained, the order of the accuracy is not
changed if the mesh has a variable spacing. For buckling of a ring under
uniform pressure there is no reason to use a finer spacing in any local region.
A constant mesh spacing gives the more efficient --del and the results for
rings with the mesh indicated in Figure 12 are shown only for demonstration

of the effect of variable spacing.




Same caomputed buckling loads are shown in Table 5. The second order accuracy
is maintained. A Richardson extrapolation based on the results for 9 and 12
elements over the 90° arch leads to PCR = 0.99997. Comparison with the results
in Table 4 indicates that the results are somewhat less accurate than those
obtained with the finest of the two spacings used and somewhat better than j
those obtained with the coarser spacing. The prebuckling solution for the |
variable mesh with 6 elements shows a rather large error in lateral displacement
although the error in the buckling loads is only 0.43%. The computed displace-
ments vary from about 7% above to about 7% below the analytic solution

(w= pR?/EA), being too small in the area with coarse spacing.

Symmetry
45°; 2 x m equal spacings

45°; m equal spacings

Symmetry

Figure 12, Ring with Variable Mesh

TABLE 5
BUCKIING OF RINGS WITH VARIABLE MESH
Number of
Elements, i P Error 5
on 90° CR E Ei
6 1.004271 .004271 .1538
9 1.001836 .001836 .1487
12 1.001020 .001020 .1469
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Section IX

PILANE STRESS PROBLEMS

In plane stress problems the displacement coamponents u, v are functions of
two spatial coordinates %, y. The strain energy is defined in terms of the
first order derivatives Uy u,y v Consequently, the Ritz theory requires
that the functions u and v are continuous over the damain. The simplest
element for analysis of plane stress problems is the triangular element.

A Taylor series in two dimensions including derivatives up to the first order
contains three terms. Consequently, a displacement field in which the first

order derivatives are of first order accuracy can be determined from three

nodal function values. The obwious choice then is an element in which the

degrees of freedom are represented by the values of u and v at the corners.

' err V.

Two adjacent elements have identical values of the displacement components at
both ends of the interface and these components vary linearly with the space
coordinates. Thus, the values of u and v in the two elements are identical
over the entire interface, i.e., u and v are continuous over the damain.
Elements that satisfy the continuity requirements of the Ritz theory are
referred to as conforming elements.

With linear variation of the displacements all strains (in linear analysis) are
constant within an element. The triangular 6-degree-of-freedam element is
usually referred to as the "Constant Strain Triangle" or the CST-element. As
the strain is constant throughout the element it is obviously sufficient to

use integration with one Gaussian point, i.e., the c.g. of the triangle. This
point is also the stress window where the strain is expressed with a second
order accuracy. In a range of sufficiently small elements the error in analysis
with CST elements varies with the square of the mesh spacing.

Equivalent to the Taylor series approach is the use of linear shape functions.
For triangular elements it is convenient to express these shapefunctions in
temms of so called area coordinates as discussed, for example in Reference 12.
The definition of such coordinates is illustrated in Figure 13.
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Figure 13. Area Coordinates for Trianqular Elements

The location of a point P inside the triangle is uniquely determined if two
of the areas of the subtriangles Ai are known. Consequently these areas, or
rather the areas normalized with respect to the total area A of the element,
can be used as space coordinates.

E=A/A, n=A/A, L =AY/A (48)

As the relation £ + n + ¢ = 1 holds, the Cartesian coordinates of point P
can be written in the form

(49)

»x
]
»




The same interpolation may be used for the displacement components u and

v, i.e.,
1 1 1 1 £
up =l uy u, : n (50)
v vy Vy, Vg 4

where uv, represent the discrete values of the displacement components at
corner i. The inversion of Equation (49) is needed for expression of the

location of Gaussian integration points in terms of the area coordinates.
The inverse is given in Reference 12.

In order to raise the order of accuracy of the triangular plane stress

element it is necessary to add another three freedams for each displacement

component (there are three second order derivatives). A natural choice then

is to add the displacements at midside nodes on each of the element boundaries.

Figure 14 shows a triangular element with midside nodes and indicates nodal

values of the area coordinates. !

Point x y & n %
3
1 X ¥y l1 0 0O
v A 2 X, ¥ 0 1 0
3 X3 Y3 0 0 1
4 Xy ¥y 172 1/2 0
S 5 Xg ¥g 0 1/2 1/2
6 6 x6 y6 1/2 0 1/2

Figure 14. Linear Strain Triangle

43




The relation between Cartesian and area coordinates is given by:

£ (1 - 2p)
n (1 - 2n)
1 1 1l 1 1 1l 1
z (1 - 2p)
X =] X X5 X3 X4 Xo X¢ (51)
4en
Y) LYy Yy Y3 Y4 Y5 Yg
4nc
1143

Using the correspording interpolation for the displacement camponents we
obtain a simple expansion, equivalent to the result of a quadratic Taylor
series approach.

That is
6
u = zl: u.P,
6 (52)
v = }1: v.P,
ii
where each of the six shape functions
Pi = {E(l ~ 2¢) , n{l - 2n) [} C(l - 2n) , 4¢n , 4ncg , 4z} (53)

are equal to unity at one of the six nodes and zero at the others.

Fram Equations (52) and (53) it follows that the displacement components
are quadratic with respect to the spatial coordinates. Since two adjacent
elements have three freedoms (for each displacement camponent) in common
the linear strain triangle (ILST element) is conforming and the convergence
recquirements of the Ritz procedure are satisfied.
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With the same nodal pattern we can define the displacements inside the element
by use of four constant strain triangles. Clearly this gives a less accurate
representation of the strain than the linear variation obtained by use of the
shape functions in Equation (51). We would expect therefore that the higher
order representation (the linear strain triangle) should lead to a more
efficient analysis.

Triangular plane strain elements with fourth order accuracy require at least
a displacement field based on ten degrees of freedom (there are four third
order derivatives). Such elements can be derived (see Reference 12, for
example) by introduction of a node internal to the triangle and use of two
midside nodes on each side. Alternatively freedams at midside nodes can be
substituted by displacement derivatives at the corner nodes. This seems to be
urndesirable because it inhvolves use of normal strains U, and v,y as freedoms.
These are generally not defined on boundaries.

Three sided elements with curved boundaries can be defined in the same way as
the trianqular elements. Generally such elements will not be free fram strain
energy due to a rigid body displacement (compare the discussion of curved
beam elaments above). If the element is rigidly displaced in its plane a strain
free configuration is possible only if the shape functions used for displace-
ment can exactly represent the initial shape of the element boundary. In

other cases an error is introduced which disappears with diminishing gridsize.
The order of the error depends on the arder of the power series representing
the displacements. One way to avoid self-straining is referred to as
isoparametric representation. In this procedure the same shape functions are
employed to describe (approximately) the element boundaries as well as the
inplane displacement configuration. For example, with LST elements the

element boundaries can be approximated by polynomials up to the second
order.

The relative efficiency of linear strain triangles versus constant strain
triangles is illustrated in Figure 15. A section of an annular plate as shown
in the figure is clamped at Side 1. The curved sides are free and Side 3
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Figure 15. Deformation of Annular Plate
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is subjected to a displacement of 0.1 in. and a rotation of 0.0l radians as
shown. The figure shows the error in the total reaction force, normal to
Side 1. It appears that for the same accuracy in the results the analysis
with constant strain triangles leads to camputer cost that is same twenty
times higher than it is with linear strain triangles. With E = 107 psi,

v = 0.3 and the plate thickness 0.1 in. and a 17 by 17 grid the total reaction
is 52905 lbs. The linear strain triangle (or quadrilateral) should only be
used as the membrane part of a plate element and its use should be restricted
to situations in which accurate representation of the bending behavior
requires a grid fine enough for analysis of the membrane behavior with
constant strain elements.

Quadrilateral plane stress elements can conveniently be defined by cambination
of two or more triangular elements. In case of a linear analysis the freedoms
oorresponding to nodes that become internal to the element can then be
eliminated by condensation. That is, they can be eliminated through energy
minimization on the element level and do not appear as freedams in the final
trial functions.

It is, of course, also possible to derive quadrilateral elements directly

in the same way as was done for triangular elements. In order that the
displacements at nodes be campatible with that of adjacent elements it is
necessary that the displacements at all four corners be included as degrees
of freedam. Consequently, it is generally not possible to restrict the
displacement pattern to one that represents constant strain. Using the
Taylor series approach we must include the function itself, the two first
order derivatives and at least one of the secord order derivatives. To avoid
directional bias we must choose the mixed derivative on the right hand side
of Equation (4), i.e., the bilinear expansion. For convenience we introduce
the coordinate system £, n with the property that £ equals -1 and +1 respec-
tively on two opposite sides and n similarly equals -1 and +1 on the other
two sides as shown in Figure 16. The coordinates £ and n are expressed in
terms of the x and y coordinates at the element corners by
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X = ii:l P, s y= iél ¥;P; (54)
where

P,=t1-g Q-0 Py=F1+ 80 (L-n

Py =Fl+8 (1-n Py=71-8 (1-n

Similarly a displacement component can be defined by

4
u= 3 u, P, (55)
i=1

where the u, are the nodal values of the displacement u. In this case
identical interpolating polynamials are used for displacements and
coordinates (isoparametric representation). The mapping (Figure 16)
fram the x,y to the £,n space is referred to as isoparametric mapping.

Two adjacent element have common displacements at the endpoints of the
interface. Since either ¢ or n is constant along any element boundary
the displacement field is linear along boundaries and an element based
on these shape functions is conforming.

In order to achieve secord order accuracy in the definition of the first order
derivatives anywhere inside the element we must include at least six degrees
of freedom. Directional bias will result unless the number of nodes is
divisible by four, a possible node at the element midpoint not counted.
Consequently the higher order element should have 8 (or 9) nodes. It

seems logical to add a node at the middle of each side,

The higher order representation of the displacements allows parabolic
approximation of curved element boundaries without self-straining.
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In general, third order accuracy in the first order derivatives requires
that at least ten degrees of freedom are utilized in the definition of the
displacement field. However, in the one-dimensional case, the three point
scheme for inplane displacements shown in Figure 8 results in an expression
for the first order derivative with a third order error at the two Gaussian
point. Therefore, we can expect a third order accuracy in the element with
nine ncdes. These linear strain quadrilateral elements are referred to as
the 1SQ8 and LSQY elements. With two inplane displacement components these
elements have 16 and 18 degrees of freedoms, respectively.




Section X

PLATE AND SHELL, ELEMENTS

The energy functional based on plate or shell theory contains changes of curva-
ture of the reference surface, i.e. second order derivatives of the lateral
displacements. Consequently, the trial functions as well as their first order
spatial derivatives must be continuous across element boundaries in order that
convergence with decreasing grid size to the correct solution will follow

fram the Ritz theory. Efforts to define efficient and conforming plate or
shell elements has led to a great proliferation of bending eleament configura-
tions.

In linear analysis of flat homogenous plates, with the midsurface as reference
surface, membrane and bending behavior are uncoupled. The bending energy in
the plate deperds exclusively on the lateral displacement w and the membrane
energy exclusively on the inplane displacements u and v. In that case it is
possible to superimpose bending elements onto the membrane (plane stress)
elements discussed in the preceding paragraphs. In nonlinear analysis the
mambrane energy, due to stretching of the middle surface, depends on the
lateral displacement pattern and in analysis of curved elements the bending
energy is a function of inplane as well as lateral displacements.

Bending and membrane elements then have common degrees of freedom but as long
as the constitutive equations for the shell wall do not introduce membrane-
berding coupling it is still possible to superimpose independent bending and
meambrane elements. Most problems involved in the development of finite element
configurations for shell or plate analysis are independent of this coupling.
Therefore, it is helpful to discuss some aspects of these configurations in the
less cample framewark of pure bending analysis.

Plate bending elements generally include as degrees of freedam rotations
(displacement derivatives) as well as lateral displacements. In a triangular
element the number of degrees of freedam, must be divisible by three, those
at a possible node at the midpoint of the element not counted, as otherwise

51




directional bias would occur., Secornd order-derivatives must be determined

at least to a first order accuxracy. As a consequence the lowest possible
mumber of degrees of freedom is six.

The element in Figure 17 shown in a Cartesian system x, y, z then represents
the simplest possible triangular bending element. Use of a Taylor series

approach leads to a uniquely determined complete quadratic representation of
the lateral displacement field, that is

- 2 2
W =a + bix + byy + ¢ ;X" + Cp Xy + Cpy (56)

W2

8, ©)

Figure 17. Constant Curvature Triangular Element

The changes of curvatures as second order spatial derivaties of w are all
constant over the element surface. Along a side, between nodes 1 and 2
(y = 0) for example, the rotation around the element boundary is of the form

w,y = bl + Ccp X (57

That is, the slope varies linearly. However, two adjacent element have
only one rotational freedom in common.

Therefore, the constant bending
element is nonconforming.

Similar problems are encountered when triangular
bending elements of higher order are developed.

twelve freedams are shown in Figure 18.

Elements with nine and

52




Figure 18. Triangular Elements with Nine (a) and Twelve (b)
Degrees of Freedam

A camplete cubic can be determined by use of ten degrees of freedom. Thus the '
displacement field in the nine degrees of freedom element, can be determined

by use of a cubic Taylor series only after a constraint is introduced. For

example, the coefficients for the xzy or xyz terms may be required to be

identical. In that case the expression for the rotation around the element

boundary contains terms which are second order in a coordinate along the boundary.

As only two rotational freedams are common between adjacent elements rotational

nonconformity is allowed.

With twelve degree of freedom element two quartic terms are included. Either
4 or x%y, xy> can be included but in any case the edge
rotation becomes cubic in terms of the spatial coordinate along the boundary.
As four coefficients are required to determine uniquely a cubic and adjacent
elements only have three rotatioml freedams in comon, the element is non-
conforming.

of the pairs x4, Y
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It is possible to eliminate slope nonconformity through introduction of displace-
ment constraints or to minimize its effect through introduction of penalty
functions. The latter approach can be applied to the twelve degrees of freedom
element. A fictitious term

(58)

a2 + C a2

AU =Cy a3 + G, 3y,

is added to the energy, where a3 and a,4 are the ooefficients in the x3y
and xy3 terms while C, and C2 are oonstants chosen large enough to provide
a sufficient penalty on the strain energy due to the quartic terms.

Introduction of constraints (or penalty functions) to achieve conformity
lowers the order of the accuracy of the local approximation. Since the six
degree of freedom bending triangle is of first order accuracy only it cannot
be made conforming by introduction of constraints,

A conforming triangular bending element, introduced by Clough and Tocher in
Reference 13, is based on partition into three subtriangles. This element is
discussed in same detail in Reference 12. Each subtriangle has 10 degrees

of freedom as shown in Figure 19 allowing a complete cubic representation.
The directional bias in the subtriangles is eliminated when they are combined
into one element. Since the internal subtriangle boundaries do not include
midpoint rotations as freedoms it is necessary for rotational compatibility
to constrain the element so that the rotation varies linearly along these
boundaries. The combined element has 3 freedoms at each corner, 3 freedams 3
at the element midpoint and 3 midside rotational freedams for a total of H
15 freedams. For linear analysis the freedoms at the element midpoint can be
eliminated on the element level through condensation. While the introduction
of contraints reduces the order of accuracy, condensation does not have any
effect on the final solution.




7

Figure 19. The Clough-Tocher Triangular Bending Element




Section XI

QUADRILATERAL BENDING ELEMENTS

The number of freedams in a quadrilateral element must be divisible by four

in order that directional bias be avoided (possible freedams at an element
midpoint node discarded). A bending element must as a minimum include all six
terms up to the second order. Consequently the simplest possible quadrilateral
elament would have 8 degrees of freedams. Experience with constant strain
elaments for plane stress analysis indicates that such an elerent is not
likely to be very efficient.

The first element for analysis of the bending of flat plates was a rectangular
element with the freedam pattern illustrated in Figure 20. As the element has

12 degrees of freedom, the displacement pattern can, as in the triangular element
with the same number of freedams be represented by a camplete cubic and two
quartic terms, for example, x3y and yx3. Such an element was introduced
(Reference 14) and successfully applied in plate bending analysis before the
finite element method was established as a form of the Ritz procedure. We

refer to this element with the notation QB12 (quadrilateral bending, 12

freedans) . Shape functions for this element equivalent to the Taylor series
solution are presented in Reference 15.

Yy

——ly e X

Figure 20. Rectangular Bending Element with
12 Degrees of Freedam (QBl2)
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After the finite element method was given a solid theoretical foundation, the
wisdam in the use of nonconforming element was questioned. Efforts were made
to improve the performance of the bending elements through introduction of
displacement constraints. As the order of accuracy of the local approxima-
tions thus was reduced these efforts were not particularly successful.
Generally the nonconforming elements led to better results within the range
of engineering accuracy.

In the pursuit of more efficient conforming bending elements Clough and Felippa
derived quadrilateral elements through the cambination of the Clough-Tocher
triangular elements. Either two or four triangles are combined to form
quadrilateral elements and for linear analysis internal freedoms are eliminated
through condensation. After condensation the elements have 12 degrees of
freedam and we refer to them as the CFl2,2 or CFl2,4 elements depending on
the number of subtriamgles used. With three rotational freedams along each
side and only quadratic representation of the rotations(cubic in the displace-~
ments) the element is conforming. The disadvantage with the element is that
the subtriangle approach makes it necessary to use a large number of integration
points resulting in excessive camputer time.

A conforming bending element was presented by Bogner, Fox and Schmit in
Reference 16. A theory for curved shells is utilized in the derivation of the
stiffness matrix. The strain energy due to rigid body displaceament is exactly
zero (irdependent of grid size) only for flat rectangular elements. Shape
functions are used for interpolation to ensure conformity. The only version
of the element that can be seriously considered is one BFS16 with 16 degrees
of freedom in which the twist, w, xy' has been added as a freedam at each

node. While the interpolating polynamials contain terms up to the sixth order
the rotation along the shell boundary is cubic.

Some results obtained with this element are presented in Reference 16. A flat
plate 20 x 20 in 0.l in. thick with clamped edges is loaded by a uniform
normal pressure of 0.2 psi. The material is characterized by E = 107 psi,
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v = 0.3. The results are shown in Table 6 together with corresponding results
based on analysis with the CFl2,2 element.

' Table 6
: BENDING OF SQUARE PLATE
Number of Elements Midpoint Displacement (in)
(on one quarter of the plate) CFl2,2 BFS 16
2x 2 .035592 .040475
3x 3 .039713 .040482
4x 4 .040274 .040487
5x 5 .040409
6x 6 .040453
10 x 10 .040485

The convergence with the BFS16 element is exceptionally good. For example,
the solution based on 16 such elements is as good as one based on 100

CF12,2 elements. Still it appears that the BSF16 element has seen little
use. One reason may be that it is self-straining unless flat and rectangular.
A more important disadvantage is that the twist wa is used as a degree of
freedom. This displacement parameter cannot readily be defined on shell
boundaries.
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Section XII

HYBRID METHODS

The finite element method was originally developed as a direct extension of
the methods for analysis of statically determined structures. In these
methods internal forces were introduced as unknowns rather than displacements
(Reference 17, for example). The derivation of equilibrium equations was
based on the principle of minimun complementary energy. While the displace-
ment method has become the daminant procedure in finite element analysis the
so called force method still shows same signs of life. A plate element based

on the principle was recently presented in Reference 18.

The difficulties encountered in satisfying continuity conditions at boundaries
between adjacent elements for shell or plate berding elements has motivated
the pursuit of other avenues, such as the development of mixed or hybrid
methods in which both displacement and force fields are assumed. The hybrid
method developed by Pian and Tong (Reference 19) represents an important
contribution in firite element technology. In this method the disnlacerent

freedoms are not directly used for Jdefinition of the displacements inside the
element. A stress field with :mndetermined coefficients is assumed in addition
to the nodal displacements on the element boundary. The unknown coefficients
in the stress field are determined through energy minimization on the element
level with the nodal displacements defining the boundary conditions. The
element stiffness matrix so obtained is based on the nodal displacement
freedams.

As the principle of camplementary strain energy is to be applied the strain
energy is written in terms of stresses, i.e.,

U=

T

[ ()T IN] {0} av (59)
v

wher~: [N] is the matrix of compliance. That is the inverse of the stiffness

mairix.

o} =[c] (e} , N =[]t (60)




The stress vector is defined in terms or a number of undetermined coefficients

{8} (stress freedoms)

{o} = [P] {8}

where the elements of the matrix [P] are functions (polynamials) of the
spatial coordinates similar to the displacement shape functions discussed
above. The strain energy in terms of stresses then can be written in
the form

a
!

=2 )7 m (e}

where

-
]

J 1T o (p] av

v

The displacements along element boundaries are expressed in terms of the
nodal displacement freedams. Forces along the boundaries are obtained
by substitution of the appropriate values of the spatial coordinates

in the expression for the stress field,Equation (61). After integration
along element boundaries the work done by these boundary forces is
readily obtained

Q= {8)T [T] {q)

where T{q} represents an interpolation of the displacements along
element boundaries in terms of the vector of nodal freedoms {gl.

Minimization of the camplementary energy

V=U-2Q
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leads to
-1
{8} = [H] ~ [T) {gq} (66)
and the total strain energy can be written as

U=3 @ K Q@ (67)

K = [T]T ] [T (68)

is the element stiffness matrix corresponding to the displacement freedams g.

While the use of forces as freedoms leads to an underestimate of the strain
energy, the displacement method, provided the rules of the Ritz theory are
followed, overestimates the strain energy. The hybrid method as presented
above gives results that are bracketed by those obtained from force and
displacement methods. Consequently, the convergence in many cases is

very good. A rectangular bending element of this type was presented in
Reference 19. This element has 12 displacement freedams and up to 23
coefficients in the stress field. A general quadrilateral version of the
element is used in the SPAR computer program (Reference 20). We refer to
this element by the notation QH12 (quadrilateral hybrid, 12 freedams).
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Section XITI

USE OF NONCONFORMING ELEMENTS

After the finite element analysis was given a firm theoretical foundation as a
form of the Ritz procedure, the question of possible convergence of nonconform-
ing elements has been a subject of considerable interest (References 6 and 21,
for example). The process of integration of the energy over the individual
elements followed by a summation over all elements leaves out possible work
done by forces on the element boundaries. For conforming elements this work
vanishes because contributions from adjacent elements cancel one another.

If the elements are nonconforming the work corresponding to the forces on the
boundary and the discontinuity in displacement (or rotation) is left out of the
energy balance. The procedure can converge to the correct solution only if
this work vanishes with diminishing grid size.

In Reference 22 Irons and his coworkers suggested a simple test to be applied
to nonconforming elements. This test has later became known as the patch test
and it appears that the passing of this test is a sufficient but not always
necessary convergence requirement. As first presented the patch test required
that for any patch of elements subjected to displacements corresponding to
constant strain (constant curvature for bending elements) on its boundary, the
solution everywhere in the inte.‘or should be accurate, i.e., the strain is
constant throughout the patch.

In Reference 6 Strang and Fix show that the patch test is equivalent to the
requirement that the work corresponding to displacement discontinuities along
elament boundaries vanishes. A rectangular element developed by Wilson
(Reference 23) is used for demonstration. Wilson raises the order of the
bilinear plane stress elements (Figure 16) by addition of the two so called
bubble modes

P = (1- ) and P, = (1- n%) (69)
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These are clearly nonconforming modes, independent on the nodal displacement

components. The formulation was suggested for rectangular elements only and

for such elements it is shown in Reference 6 that the addition of the noncon-
forming bubble modes results in a considerable improvement in the convergence
rate.

It is shown in Reference 6 that 'the energy of the discontinuity'" vanishes
identically when the integration is carried over the entire boundary. For a
general quadrilateral element on the other hand, the integral over the boundary
can be represented as a constant times the difference in the lengths of opposite
sides.

Consequently, the contribution to the energy from one element is proportional to
the grid spacing. However, the total length of all element boundaries is pro-
portional to 1/h2. Therefore, it does not seem likely in any given case that
analysis based on nonrectangular elements with bubble modes will converge to

the correct solution. A modification of this approach presented in Reference 24
makes it possible to use the bubble modes also with nonrectangular elements.

A relatively simple and often used nonconforming bending element is the quadri-
lateral 12 degree of freedom element QB12 (see Figure 20). For this element the
lateral displacement component can be expressed in the form

2 2
w= Co + Clx + Czy + c3x + C4xy + Csy

3 2 2 3
+C6x +C7xy+C8xy +C9y

3

(70)
+C x3 + Cy XYy
10 ¥ 7 M1y

The element edge rotation is represented by the normal derivative, that is, if the
side makes an angle o with the y-axis

3w/3n = 3w/ax cos a + w/oy sin a (71)
Two adjacent elements have matching slopes at the end points of the common
boundary. Consequently terms of lower than second order in the coordinate
along the boundary do not cause any slope discontimuity. The mismatch in
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slope between adjacent elements is of the form

A-s—awn- = C&;2 + higher order terms (72)
To obtain the energy of the discontinuity we multiply the slope discontinuity
by the average bending moment Mo (higher order terms are irrelevant) and
integrate the product over the length h of the interface. The result is
of the form Q4 h>. As the total length of element boundaries is proportional
to l/hz, the total energy of the discontinuity is proportional to the grid
spacing. We expect therefore that the use of the (Bl2 element will lead to
convergence of first order, i.e., E = O(h).

If the element is rectangular it passes the patch test as posed in
Reference 6. Consequently, any displacement pattern with constant curvature
is exactly represented, independently of grid size, i.e., the accuracy is
at least of second order. The general quadrilateral element passes a milder
form of the test, requiring that the error in energy introduced by the
nonconforming modes is proportional to same power n>0 of the gridsize.

The performarsr: of the QB12 element is illustrated here in a few examples.
A simply suppurted square plate 5 x 5 in. and 0.1 in. thick is made of a
material with E = lo7 psi and v = 0.3. The plate is subjected to unidirec-
tional compression. 1In that case (see Reference 25 for example) the
critical load is

—’i-ﬁh% = 1446.0958 1b/in. (73)
12(1 - v9)b2

N, =4

The buckling mode may be assumed symmetric about two planes. Hence, in the
finite element amalysis it is sufficient to consider a quarter model of the
plate. Some results are shown in Table 7, where N represents the number of
elements, in each direction, on this quarter model.
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| TARLE 7
BUCKLING OF SQUARE PLATE

No. of Elements QB12 12
NxN Critical load Error B  Critical Load Brror vt
2x2 1391.19 54.91 220 1451.04 4.94 79
4 x4 1431. 44 14.66 235 1446.41 31079
6x6 1439.50 6.60 238 1446.16 06 78
8 x 8 1442.37 3.73 239
10 x 10 1443.71 2.9 239

Richardson's extrapolation based on the results for N= 8 and N = 10 with the

assunption of second order convergence leads to NCR = 1446.100, i.e., to an

error of 0.00028 percent. It can be little doubt then that the use of this

nonconforming element leads to a second order convergence. For a one percent

error we need four elements per quarter wave. Four elements per half wave

gives a barely acceptable 3.8 percent error. U

Table 7 shows also results obtained with the hybrid element QHl2. In this case

corvergence is from above and clearly a fourth order accuracy is obtained. With
four elements per halfwave the error is as small as 0.34 percent. For the same

grid the runtime with the QS12 element is only slightly larger than with QB12.

The problem of buckling of a spherical shell under uniform external pressure
was considered in a study of the convergence behavior of the nonrectangular
@B12 element. In order that effects of approximations in the inplane displace-
ment field be eliminated, such displacements were suppressed in the buckling
mode. The computed buckling loads, then are physically meaningless but this does
not mar the conclusions about the numerical behavior of the bending element. A
spherical segment with radius 10 in., thickness 0.1 in., Young's modulus 10’ psi
and Poisson's ratio 0.3 was analyzed. Circumferentially the segment covers 9
degrees. In the direction of the meridian the segment covers the range 36 to
45 degrees measured fram the apex. This segment buckles in a mode with one half
wave in the meridional and one quarter wave in the circunferential direction.
Therefore, it was assumed that the buckling mode was antisymmetric with respect
to one of the sides along a meridian. Symmetry conditions were applied at the
other three sides. Buckling loads are shown in Table 8.
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TABLE 8

BUCKLING OF SPHERICAL SHELL SEGMENT

Number of
Elements Critical Error
N xM Load %
4x 2 9034.1 12.82
6x 3 9704.4 6.35
8x 4 9965.9 3.83
10x 5 10091.9 2.61
12x 6 10161.7 1.94
16 x 8 10232.1 1.26
20 x 10 10265.0 0.95
24 x 12 10283.3 0.77
28 x 14 10295.0 0.65
32 x 16 10303.5 0.57

It appears that the conwvergence is of first order ard for grids as fine as

24 x 12 or better the first order term daminates the error. 1In that rase the
buckling load would be 10362.6 psi. The errors given in the table are based
on this value. The convergence in this case is much worse than it is with
rectanqular elements. Eight elements per halfwave correspond to an error of
3.8%, and for a one percent accuracy we need 20 elements per half wave.

The results fram two linear plate bending analyses are shown in Figure 21.

In one case a quadratic plate with clamped edges is subjected to uniform
lateral pressure. The error in the midpoint displacement is shown as a function
of the number of elements along each side on a quarter model of the plate.
Despite the nonconformity the displacement is underestimated.

The other case is one with nonrectangular elements. The annular plate is
clamped at one of the straight edges and the other three edges are free. The
plate is subjected to a uniform pressure. The error in lateral displacement
at point A is shown in the figure. As a result of rotational nonconformity,
convergence is now fram the opposite direction, i.e., the displacements are

overestimated. However, the convergence is still relatively good
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presumably because inaccuracies due to the nonconformity and apmroxima.ion
of the deformation mode tend to cancel one another.

For same reason, presently unexplained, the bending analysis of the annular
plate leads to an illconditioned equation system. With grids 13 x 13 or finer
it was necessary to apply a linear refinement procedure in order to obtain
accurate results (on CDC 175). This problem did not occur in the buckling
analysis of the spherical shell segment., However, with slow convergence for
the spherical shell and conditioning problems in the annular plate analysis
it seems advisable to avoid use of QB12 elements that deviate substantially
fram a rectangular plan form. The rectangular version of the element may
often be unsuitable for buckling analysis because the critical load converges
fram below. This restricts the possibilities to increase the grid spacing
in areas with light loading.




Section X1V

AHMAD-TYPE ELEMENTS

Three-dimensional elements can easily be derived by direct extension of the
isoparametric representation for the plane stress case discussed above

(see Figure 15). Second order derivatives (curvature changes) do not appear
in the functional, and therefore it is sufficient for convergence that the
displacement camponents themselves are conforming. There is no requirement
of interelement campatibility of displacement derivatives (rotations). 1In
view of the difficulties encountered in the derivation of elements based on
the theory of plates and shells, it appears worthwhile to try to represent
the shell by a single layer of such brick elements (Figqure 22).

Figure 22. Isoparametric Brick Element with 20 Nodes

Primarily due to the problem with illconditioned matrices this approach did
at first not meet with much success. The thinner the shell, the less suitable
are the brick elements. This problem was circumvented in a publication by
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Atmad, Zienkiewicz, and Irons (Reference 26) by introduction of the basic
assumptions of the shell theory into the fornmlation of the brick element.
First it is assumed that the energy due to stresses in the direction of the
shell normal can be disregarded. The assumption that normals to the shell
remain straight is also invoked. As a consequence it is possible to express
the displacement camponents at nodes on the shell surface in terms of displace-
ments and rotation camponents at the shell reference surface by use of simple
transformation matrices. The set of freedams referred to in the interface with
a program user is shown in Figure 23a and the equivalent set of basic freedams
on which the enerqgy expression is based is shown in Figure 23b.

u,v at
shell
surfaces

at mid

u,v,w) at 8
re! ' surface

3162 ‘ nodes

a) "User Freedoms” b) Basic Freedoms

Figure 23. Freedom Pattermns in an Ahmad Type Eleament

The user freedams are three displacements and two rotations at each of eight
reference surface nodes for a total of 40 freedams. The basic freedam pattern
contains two freedams at each of 16 shell surface nodes and one freedam at
each of 8 midsurface nodes, again for a total of 40 freedoms.




In a first order shell theory it is assumed that normals remain straight and
normal to the reference surface in the deformed configuration. This means
that the theoty neglects deformattions due to transverse shear stresses.

A secord order theory approximately includes transverse shear effects as the

normal is assumed to remain straight but is allowed to rotate with respect to
the shell reference surface. The shell assumptions introduced in the Almad
element correspond to those of a second order theory.

A first order shell theory also contains the assumption that the ratio of thick-
ness to shell radius is small so that it can be neglected in camparison to one.
This assumption is not introduced in an Ahmad tvpe element. A more accurate
description of the shell bending deformation is therefore cobtained and together
with the inclusion of transverse shear deformation this extends the applicabil-
ity of an analysis with Ahmad type elements to the range of "moderately thick"
shells.

The inclusion of transverse shear deformation introduces a special problem.
The description of the deformation pattern must be general emough to inhibit
the development of excessive transverse shear strain. The presence of such
strains leads to unsatisfactory convergence properties with the early Ahmad
type elements. In Reference 27 Pawsey circumvents this problem through
introduction of reduced integration. Following Reference 27 we illustrate the
problem in the one dimensional case. We consider the case in which the bend-
ing moment varies linearly and vanishes at the midpoint of the beam element as
illustrated in Figure 24a.
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Figure 24. Ahmad Type Beam Element with Linearly Varying Bending Moment

The correct solution with the rotations +8, -8, +8 at the three nodes is shown

in Figure 24b. Since the shape functions are not sufficiently general to allow
this deformation pattern, the solution represented in Figure 24c is instead
obtained. In this deformation pattern the transverse shear contributes a very
large part to the strain energy. However, Pawsey shows that the correct value

of the shear strain is obtained at the Gaussian points with two-point integration.
A similar problem is encountered for curved beam elements subjected to a

constant bending mament. For this case Pawsey shows that a spurious normal
membrane strain develops, but also that this strain vanishes at the two

Gaussian points.

It was established thus in Reference 27 that for the Almad type element,
convergence with gridsize is considerably better if we use a reduced integra-
tion scheme. TFor the plate bending element this would mean that eight (two
sets of four points) integration points are used rather than the eighteen
points that would be required for accurate integration of the linear part

of the strain energy. As noted above the use of reduced integration can
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allow the development of strain-free deformatior modes (mechanisms).
the 8-noded Ahmad-Pawsey element these are:

1} A membrane defarmation mode with

2) A bending mode with

W=z -6 0-n -3

Here £ and n are nondimensioral space coordinates chosen such that they
vanish at the midpoint of the element and equal plus or minus unity on

2

2

+ n%)

For

element boundaries. It was shown by Taylor (see Reference 6, p. 189) that

the bending mode is not "contagious'’, i.e. it occurs only for a single
element. With more than one element the global stiffness matrix is not
singular for any boundary conditions suppressing the membrane mode.

(74)

(75)
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Section XV

FLAT ELEMENTS FOR CURVED SHELL ANALYSIS

Curved shell elements require large amounts of computer time for formulation

of the stiffness matrix. Also the use of curved elements introduces the
problem with self straining. Therefore, curves shells have most frequently been
analyzed by use of flat elements. This results in a conformity problem that
seems to be particularly important in nonlinear or stability analysis.

Figure 25 shows two flat elements representing a portion of cylindrical

surface. Rotational campatibility at the modes is enforced after the campon-
ents of rotation are referred to the same set of coordinmates, implying that

(e 3(,1) ) 652)) oos (o/2) - (sél’ + e§2’> sin (a/2) = 0
(76)
(B él) - Bf)) cos (a/2) + (6)(,1) + B)‘Iz)) sin (a/2) =0

where the superscripts (1) and (2) refer to the element number.

then adjacent flat elements meet at an angle, it is necessary to introduce
the normal rotation as a freedom of the system. A disadvantage with this is
that the normal rotation does not appear in the strain energy expression.

As a consequence the resulting linear equation system becomes increasingly
ill-conditioned as the angle between the planes of adjacent elements becomes
smaller. Generally, finite element computer codes define a small limit

ag and if a<a, the rotation B, is ignored and as an approximation the

conformity constraint becomes 8)(,1) = 61(12) . h




Figure 25. Flat Element for Curved Shell Analysis

A more serious problem caused by the use of flat element for curved surfaces
is related to interelement displacement nonconformity. The strain energy
expression includes derivatives of the inplane displacements u, v of first
order only while the bending strains include secord order derivatives of the
transverse displacement. Therefore, w is usually represented by polynomials
of higher order than those representing u and v . Typically w is cubic
and u and v are either linear or quadratic within the element.
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For two adjacent flat elements at an angle with one another, complete displace-
ment cawpatibility requires that along the entire boundary

it
o

(v - v w05 a2 - (WP 44 P) sin w2
(77)

fi
o

(w(l’ - w(z)) cos (a/2) + (v(l) + v(z)) sin (4/2)

Clearly, these conditions cannot be satisfied unless v and w along the
interface are represented by polynomials of the same order. Failure to enforce
this campatibility allows the individual elements to buckle under axial com—
pression as plates with free edges. Displacement conformity can be restored
by introduction of constraints on w. However, this results in a very stiff
element and the buckling load shows rather slow convergence from above with
decreasing grid size.

On the other hand displacement conformity can be restored by raising the order
of the polynamials representing inplane deformation. With a cubic representing
w it is necessary that third order polynimials are used to represent u in
terms of the y~coordinate and v in terms of the x~coordinate. This can be
achieved through inclusion of normal rotation components as supporting freedoms
for the inplane displacement field. This approach was used in the development
at Lockheed Missiles & Space Company, Inc of a flat element for thin shell
analysis. The out of plane deformations (bending element) were defined in the
same way as in the QB12 element discussed above. That is, rotational nonconform-
ity is permitted. The accuracy is of second order for rectangular and first
orde.’ for general quadrilateral elements.

Inplane displacements were defined through an extension of the bilinear plane
stress element. The derivatives U, and v,y represent normal strains and
inclusion of these as degrees of freedam would lead to difficulties in the
specification of boundary conditions. On the other hand, the derivatives
Vig and u,y represent rotations around the normal of short line segments in
the x and y directions, respectively. Unless the shear strain is zero
these two rotation components are distinct and independent of oue another.
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The shear strain is equal to the difference between these rotation components,
i.e., u,y + Vi If the shear strain is allowed to be discontimous at the

node there can be more than two distinct normal rotation components. Inclusion
of those does not seem to be practical as it leads to great complexities in the
formulation. After introduction of the normal rotations as freedams, an inplane
displacement field is obtained in which displacements normal to the element
boundaries are cubic in the coordinate along the boundary. The detailed

derivation of the stiffness matrix for the element is given in the Appendix.

The use of the normal rotations as support freedoms for the inplane displacement

field raises the order of the polynomial expressions for these displacements in

one of the coordinates only. As the constant strain elements are known to have

poor convergence properties, the orders of u in the x-direction and v in the
y-direction were raised by addition of tangential displacement freedoms at

midside nodes. The element is referred to here as SH4l1ll. Its freedom pattern

is illustrated in Figure 26, 1

A somewhat simpler version of this element SH410 excludes the midside nodes and
uses only an average normal rotation component at the corner nodes. This means
that u is linear in the x-direction and v is linear in the y-direction, and
also that the shear strain is suppressed at the nodes. This limits the useful-
ness of the element to special cases. The SH41ll element has nine and the
SH410 has five integration points. However, it is also possible to use reduced
integration with four points in each of these elements.

The membrane part of these elements has also been combined with the hybrid
bending element. We refer to these elements as SH416 with the more refined
inplane displacement field and SH415 with the lower approximation.
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Figure 26. Freedom Pattern in SH41ll
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The problem with displacement nonconformity is illustrated here by use of a
study of the convergence with gridsize of the buckling loads for flat and
cylindrical panels subjected to axial campression or shear. Results were
obtained with the elements SH410 and SH4ll and also with flat elements devel-~
oped through cambination of the bending element CFl2, discussed above, with
quadrilateral membrane elements obtained through combination of IST or CST
triangles. We refer to these elements as SH420 (with constant strain
triangles) and SH422. For flat panels the buckling mode does not include
inplane displacements. Therefore, the results with SH41ll and SH422 would be
practically the same as those obtained with SH410 and SH420 respectively, and
the elements with higher order representation of inplane displacements are
not included in this camparison.

Results of an analysis of buckling of a flat plate under axial compression are
shown in Table 9.

TABIE 9
BUCKLING OF FLAT PLATE IN COMPRESSION

Critical Load (lbs/in) with

Grid SH410 SHA420 SH440
3x 3 1391.1934 (2.0) 1454.2594 (2.8)

Sx S5  1431.4386 (4.2) 1446.7181 (7.6) 1449.8566 (8.1)
7x 7  1439.5026 (8.4) 1446.2242 (16.6)  1442.9518 (14.8)
9 x 9  1442.3723 (20.1)  1446.1372 (29.8)  1442.5526 (25.5)
11 x 11 1443,7136 (32.3) - 1442.4792 (40.4)
13 x 13 - - 1442.4565 (58.7)
15 x 15  1444.9247 (69.9) - -

19 x 19 1446.5234 (130.3) - -

8

1446.10 - 1442.42

The AHMAD-type element is referred to here as SH440. In the definition of a
grid the mid side nodes in that element have been included, i.e., a 3 x 3 grid
corresponds to only one SH440 element. The run times (CPH on the CDC175

NOS, BE system) are given in parenthesis after the corresponding buckling load.
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The plate dimensions and material properties are the same as those leading to
Equation (74), i.e., the critical load is 1446.10 1bs/in. With the SH440 the
critical load is somewhat lower since transverse shear deformation is included.
Extrapolation from the results in Table 9 indicates that the critical load
would be 1442.42. To obtain an accuracy in the buckling load of 0.5 percent
the following run times are required

with SH410 8.4 sec
SH420 2.8 sec
SH4LO 8.1 sec
SH415 2.0 sec

If a higher accuracy were required analysis with the SH410 element would be
considerably more expensive.

Table 10 shows results from buckling analysis of a simply supported flat plate
in shear. The plate dimensions are 5 x 5 inches and the thickness 0.1 in. and
the material properties are E = 107 psi, v = 0.3, The reason that run times

are smaller in this case in comparison to those with the same grid in the axial
compression case is that the convergence in the eigenvalue analysis is much
faster. The results with SHA1S indicate fourth order accuracy and extrapolation
from these values we determine the critical loads 3371.3 1lbs/in. without and
3339 1bs/in. with transverse shear effect (SH440). The figures in the table then
show that for 0.5 percent accuracy the required computer time is:

with SH410 33 sec
SH420 27 sec
SH440 100 sec
SH415 9 sec

If the accuracy requirement is reduced to 2 percent the corresponding times are: |

with SH410 11 sec
SH420 15 sec
SH4L0 40 sec
SH415 6 sec




TABLE 10

BUCKLING OF FLAT PLATE IN SHEAR

Critical Ioad (lbs/in) with

Grid SH410 SH420 SH440 SH415
5x 5 3182,59 (3.6) 3650.60 (7.5) 53063.0 (7.3) 3544.61 (3.9)
7x 7 3255.39 (6.5) 3423.80 (15.5) - 3406.72 (7.1)
9x 9 3301.26 (10.9) 3389.11 (27.5) 4093.58 (19.6) 3382.54 (11.8)
11 x 11 3325.28 (16.6) 3379.00 (44.1) - -
13 x 13 3338.92 (24.1) - 3403.48 (40.2) -
15 x 15 3347.31 (32.9) 3373.30 (80.9) 3365.06 (82.0) -
17 x 17 - 3352.20 (100.1) -

19 x 19 3356.61 (52.7) 3347.25 (170.1)
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Results for a cylindrical shell segment under axial compression are shown in

Table 11. The segment represents a camplete cylinder, simply supported at the
edges, with a length of 11.0 in. and a radius of 36 in. The thickness is

0.125 in., Youngs modulus 107 psi, and Poisson's ratio 0.3. It is assumed that
symmetry conditions prevail at midlength and that the cylinder buckles in

15 circumferential waves. Consequently a 5.5 in. long 12 degrees wide
cylindrical segment is considered with symmetry enforced on three sides. The
critical load according to an analytical solution (Reference 24) is 2500.69 lbs/in.
Since the element SH410 in the limit supresses inplane shear in the buckling
mode the critical load converges towards a value that is somewhat too high.
However, the results are surprisingly close to the analytical solution for

all grid-sizes, the error in no case being above 0.3 percent.

Both for SH420 and SH410 it appears that the relatively good performance is

due to a fortuitous and presumably case dependent cancellation of errors in

different directions. Thus it makes little sense to include those in a

comparison of run times for different elements. For 0.5 percent accuracy in !
the buckling load the following run times are required.

with SH411 13 sec
SH422 not achieved
SH440 13 sec
SH416 8 sec

For an accuracy of 2 percent the corresponding results are

with SH411 3 sec
SH421 120 sec
SH416 5 sec

Since the elements SH420 and SH422 give good results only in flat plate
analysis and in some cases may perform extremely poorly, they are not included
in further considerations. However, the triangular version (the Clough-Tocher
triangle) may be useful in shell confiqurations that cannot easily be
represented by quadrilateral elements only.
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In order to include effects of a nonuniform strain distribution in the
prebuckling range, a case was also considered in which a cylindrical shell
with axisymmetric imperfections was subjected to axial compression. The
cylinders radius is 36 in. and its thickness 0.125 in, Material data are

E=10" psiand v=0,. The imperfection is defined by

W_ = 0.03125 sin (% m/L) [cos (mx/L) - 1] (78)

Results fram analysis with the SH410 and SH41ll elements are campared to
results with finite differences (STAGSC) in Table 12. The results are not
quite accurate since the analysis does not include nonlinearities in the
prebuckling range. However, the trend is quite clear. The critical load
appears to be about 1255 lbs/in. and with the 5 x 5 grid and SH41ll elements
a 2 percent accuracy is obtained. Similar accuracy with the other two
discretization procedures would require a very fine grid spacing. In
camparison to SH410 the SH41ll element yields the same accuracy in the final
results with about one fifth of the run time. For a fixed grid size the
STAGSC program reguires much less camputer time but still, the run time is
SH41l is smaller almost by an order of magnituqe.

TABLE 12
BUCKLING OF IMPERFECT CYLINDRICAL SHELL
Critical load (lbs/in) with

Grid SH410 SHA11 Dittarences
3x 3 - 1651 -

4x 4 1931 1299 -

5% 5 1578 1280 1865
7% 7 1405 - 1538
8x 8 1375 - -
13 x 13 1316 -~ 1346




Section XVI

INEXTENSIONAL DEFORMATION

Thin shells bend easily but resist stretching. Therefore, deformation modes
tend to be inextensional. For a straight beam element the neutral surface

strain is

o=, t s (wlrw)) (79)
Unless the rotation of the element is very large, u,i << w,i. Inextensional
deformation then implies that u, is approximately equal to - 1/2 w,i. With a
third order polynmomial representing w , w,i is of fourth order. 1In that
case the relation u,, = ~1/2 w,i can hold everywhere within the element only
if u is represented by a polynamial of the fifth order. This problem was
first recognized by Haftka et al. in Reference 28. However, accurate
integration of the nonlinear terms would require use of 25 integration points
on a quadrilateral plate element. This leads to excessive camputer time and,
since reduced integration with respect to the nonlinear terms does not
introduce mechanisms in the system, cubic plate bending elements are usually
based on a nine point integration scheme. With a nine point integration
scheme it is possible to make the midsurface strain vanish at all integration
points if the inplane displacements are represented by cubic shape functions.

The simple case of a cantilever beam subjected to a point load, as shown in
_Figure 27 can be used for demonstration of the problem. The results shown
below are obtained by use of a model with two finite elements. The lateral
displacements are represented by a cubic and a three point Gaussian scheme
is used for integration. ULinear, quadratic or cubic polynamials are used
for axial displacements. Within the limitations of the theory (a Lagrangian
formulation and the curvature defined as w,m) the case with cubic u gives
exact results. The case of linear u gives pcor results even at rather
moderate values of the rotation at the end point. A two to three degree
rotation appears to define the range of applicability of results obtained
with such an element.
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INEXTENSIONAL BENDING
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Figure 27. Nonlinear Bending of Beam
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The results for a beam element with quadratic representation of u are
close to the accurate solution. However, the simple case considered here is
not quite representative and analysis of more camplex structures show that
even with second order polynamials for u and v , a substantial stiffening
due to spurious stretching of the neutral surface can take place even at
rather moderate rotations. The element SH41l discussed in the preceding
paragraph can be modified to be bicubic in the inplane displacement components
by use of two midside nodes. The only freedam at these nodes would be the
targential displacements. This would result in a considerable increase in
camputer time and it appears that the use of reduced integration may be a
more attractive solution.

Reduced integration, with four Gaussian points (i.e., reduction beyond
exact integration of the secord order terms in the energy) was introduced as
an option in the elements SH410 and SH4ll. Figures 28 and 29 show some
results on nonlinear bending of a thin and relatively deep arch. The thick-
ness is 0.125 in., and the width 1.0 in. A solution to this problem,
presented in Reference 29, is indicated by the dotted curve. The results
with SH411l elements are also shown in Figure 28. Only half the arch is rodeled
and the analysis was performed with either four or eight elements on this
model. Clearly the rate of convergence with grid size is much better if the
reduced integration is used, so that spurious stretching of the middle
surface is avoided.

Results from analyses with SH410 elements are shown in Figure 29. The
difference between use of four or five integration points is surprisingly
large but even with four points spurious neutral surface stretching cannot
be avoided and the results seem to have little resemblance to actual
structural behavior.

Although significantly different the results obtained here as well as those
in Reference 29 appear to represent converged solutions (with grid size).
Most likely the discrepancy is due to differences in the basic theory. For

example the definition of the strain €y in Reference 29 does not include
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Figure 28. Load Displacement Curves for Arch, SH4ll Elements

88




410 (4 elements) 5 int. points

100 P 410 (4 elements) 4 int. points

200 F

”4———~~~~§ MAK et al. i
- ~\§
—
—
[ L i ] i 1 I | 3 i
0 0.05 0.10 0.15 0.20 0.25 .0 0.35

Figure 29, load Displacement Curves for Arch, SH41l0 Elements Ct

89 |




the temm 1/2(v,y)2. The formulation for SH4ll was temporarily modified through

exclusion of this term, With the modified elemesits the computed limit point
is only two percent below the one reported in Reference 29. The deformed
shape at the limit point as computed with SH41l (4 elements, 4 integration
points) is shown in Figure 30.

Further exploration of the use of reduced integration to avoid spurious stretch-
ing of the middle surface indicated even greater advantage for more complex
cases. For example a good estimate of the collapse load for long cylinders

in bending (Brazier effect) can be obtained with a relatively coarse grid

(6 x 6 elements for the example used) with SH41ll and with four integration
points. With nine integration points and the same grid the ocollapse load

is overestimated by a factor of two.

An attempt was also made to solve the arch problem (Figure 30) by use of the
Ahmad type element, SH440. However, even with a very fine grid, 21 points
over the half arch the load displacement curve does not contain a limit point. b
It seems that this element has a tendency to "lock" with increasing rotation
of structural elements. At the limit point the maximum rotation in the
deformation pattern is about 35 degrees. Possibly the locking of the element
is due to the fact that the transformation of a vector of rotation components
is valid only in the small rotation range. However, displacement configura-
tions with rotations as large as 35 degrees are not within the range of the
moderate rotation theory. In that case all elements using rotations as
freedom would suffer from this problem in large displacement analysis based
on a Lagrangian formulation. It appears that the elements SH410 and SH420
elements are less sensitive to the locking problem. More light is thrown

on this problem in the following section.
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Section XVIil

SHELL QOLLAPSE ANALYSIS

For a final evaluation of the shell elements, represented by SH41ll, and the
degenerate brick element (SH440) a couple of cases with strongly nonlinear
behavior were selected. The first one of these is the so called "pear-shaped”
cylinder, first presented as an example case in Reference 30. Load displace-
ment curves (Figure 31) are shown from analysis with the SH41ll element for three
different grid configurations. The computed failure loads are

with 3 x 27 grid 3586 lbs
5 x 37 grid 2731 1lbs
7 x 47 grid 2586 lbs

For moderate values of the load there is no significant difference between
the results for different grid sizes. The convergence difficulties at higher
load levels may be due to the fact that the displacement pattern becames
more complex with higher values of the load. It oould also be related to the
locking phenamenon discussed in the previous section.

1load displacement curves for the pear-shaped cylinders obtained by use of the
SH44LD element are shown in Figure 32. The failure loads are

with 5 x 37 grid 2657 lbs
7 x 47 grid 2530 1bs

Since the elements appear to have a tendency to lock with increasing values
of the rotation camponents, the problem of convergence with grid size becomes
camplex. It is not possible to relate the error to the grid size alone and
extrapolate with confidence. However, it appears that in both cases the
collapse load is samewhere around 2300 or 2400 1lbs, that is close to the
2340 lbs obtained with a STAGS A analysis based on a 9 x 45 grid reported

in Reference 30. With the same grid size the finite difference program
gives results that are at least as close as those obtained by use of
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any of the two finite elements, at a cost that is an order of magnitude less.

The second case considered is the cylinder with a rectangular cutout for which
analytical as well as experimental results are presented in Reference 31. The
dimensions of the cylinder and the results fram analysis with the SH41l element
are shown in Figure 33.

The camputed failure loads are

with 11 x 13 grid 3698 1bs
17 x 19 grid 3060 1bs
23 x 27 grid 2922 1lbs
29 x 37 grid 2750 lbs

With SH440 elements the following results were obtained

17 x 19 grid 3733 1bs
23 x 29 grid 3098 1lbs

Finite difference solutions and experimental results (Reference 31) are in
good agreement. A finite difference analysis with a 21 x 23 grid gives a
collapse load of 2250 lbs. in good agreement with experiment. It is mot econ-
omically feasible to obtain a converged solution in this case with any of the
finite elements. The true value of the critical load may be somewhat higher
than that obtained in the experiments, but still it appears that the finite
difference approach is vastly more efficient for this type of analysis. The
maximm rotations at failure for the two cases discussed in this paragraph are
rather moderate, about 7 degrees in both cases.
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Figure 33, Load Displacement Curves for Cylinder with Cutout with !
SH411

96




Section XVIII

CONCLUSIONS AND RECOMMENDATIONS

More than anything else the results presented in the precediné sections tend

to stress the importance of the choice of discretization procedure in analysis
of shells, particularly when it cames to buckling and collapse analysis. It

is shown for example that the price for a buckling analysis with a two percent
accuracy of a cylindrical panel may vary by as much as a factor of 40

depending on the choice of element. While analysis with SH410 requires about
half the run time in comparison with SH4ll for buckling of a panel with uniform
prestress, it requires about five times as much if an axially symmetric
imperfection is introduced to generate a nonuniform prebuckling stress distri-
bution. Most striking may be is that while the finite element configurations
investigated here result in very efficient analysis of bifurcation buckling
loads they appear to be hopelessly inferior to the finite difference method
{elements with extended support) in nonlinear analysis of shells that undergo
relatively large rotations (5 to 10 degrees) before collapse occurs. It seems
reasonable to assume that this problem is related to the use of shell equations,
based on the moderate rotation assumption together with a Lagrangian formulation.
The finite difference procedure does mot include rotations as freedoms. This
may explain why it is less sensitive to these assumptions.

For bifurcation buckling analysis of thin shells the elements SH415 and SH416
are efficient and reliable (SH416 only if the prebuckling menbrane strain is
reasonably uniform). While sometimes the elements SH410 and SH41l may lead to
somevwhat more economic analysis, due to the balance between positive and neg-
ative errors, they are for the same reason less reliable. In particular the
tendency to converge from below in many cases is undesirable as it can lead to
spurious local buckling behavior unless a very fine grid is used. Also SH410
and SH41l are not suitable if the element planform deviates much from a rectangle.
On the other hand the hybrid forms SH415 and SH416 can not be used without some
penalty on camputer time or accuracy for shells exhibiting coupling between
membrane and bending behavior. For such cases the elements SH410 and SH41l1 are
recommended if the elements are close to rectangular.

It must be stressed that the imnvestigation reported here, although extensive, is



far fram exhaustive. For example Iron's Semi-loof element (Reference 32) and
the hierarchy of modified degenerate brick elements recently developed by
Hughes and his coworkers (Reference 33) should be considered. No curved
elements based on shell theory were included in the study. Except for flat
plates then, the analysis based on the shell elements included is reduced to

a second order accuracy, that is the same as in the finite difference analysis.

For thicker shells the analysis must be based on a second order theory. For
this case the Ahmad type element, SH440, is the only element included in the
investigation that will lead to accurate results (for bifurcation buckling as
well as nonlinear collapse analysis). Generally, the Ahmad element works well
also for thin shells, and the fact that it is the only choice in same shell
codes has same justification. It is feasible that the relatively slow conver-
gence in plate shear buckling will be cured by inclusion of the ninth node (at
the midpoint). However, with reduced integration this may lead to problems
with mechanisms. Also, it may be noted that the Ahmad type elements will be
penalized in terms of computer time for shell walls with membrane-bending

coupling.

The most disturbing aspect of this investigation is undoubtedly the poor per-
formance of the finite elements included in the oollapse analysis of the pear-
shaped cylinder and the cylinder with a cutout. Since the finite element for-
mulation with the same grid size gives a more accurate description of the de-
formation pattem it should not require a finer grid in the collapse analysis.
There are good grounds therefore to assume that the apparent stiffening of the
structure with increasing rotation can be cured by a nonlinear analysis procedure
that includes '‘updating of the geometry''. The so-called "corotational approach"
advocated by Horrigmoe and others (Reference 34, for example) appears to be most
promising since it allows for such updating without modification (with increasing
deformation) of element shape functions.

It is clear that much work remains to be done in the area of discretization
procedures for stability and nonlinear collapse analysis of thin shell structures.
It is recommended here that flat and curved shell elements as well as degenerate
brick elements be introduced in STAGSC-1 for analysis of an extended set of
benchmark cases. With the corotational approach the problem with self-straining
of curved elements should be essentially eliminated while a third or fourth

order accuracy is maintained. If such elements do not prove to be substantially
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more economic than the flat elements for curved shell analysis the possibilities
of reintroducing finite difference formilations must be seriously considered.
However, this alternative seems less attractive because much work would be
needed in order to derive formulations that are comparable to finite elements

in modeling capability. Particularly, programming procedures involving geometry
updating for problems with large rotations will be considerably more complex

if the elements are not self-contained.
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Appendix‘

STIFFNESS MATRIX FOR THE QUAF ELEMENT

The degrees of freedom of the system are the displacement vectors us,
vs, and w® on the shell (or plate) and the vector of rotation components
Yls, st. 81s and 825 as shown in Figure Al. These vectors represent the

components of displacements and rotations in a local coordinate x°, y°, z°

system where the x” and y” axes are tangents to the coordinate lines, and

2 is directed along the outward normal. The component of inplane rota-
tion, Yls or st, through the node point. If a set of surface coordinates
X, y are used for the grid generation, the notation Yls refers to the

rotation of a coordinate line corresponding to constant y and st refers

to the rotation of a line corresponding to constant x.

Fig. Al The Degrees of Freedom
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Next, a flat element is considered with the corners at four node points
as shown in Figure A2. A total of eight nodes are defined on the element
as shown in the figure. A Cartesian system x,y,z is introduced with x,y
.in the directions as shown, and z completing a right-handed system.
O, .
"=y
Y
sl 4
\ 0. t
" N
[) - Swe WomBer. (1) = NooE Numsie |

Fig. A2 The Flat Element

The 3x3 matrix T(i) transforms a vector in the system x°, y°, 2z~ at corner
i1 1into a vector in the coordinate system x,y,z for the element. The

displacement components at each of the corners are obtained from

a (i) “5 )(i)
v = (mW¥ v (A1)
. -
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L The vector {8} corresponds to the rotation of side number i at corner

number j. Thus

(L)) s (i)

8, = [ By j=12 |
B3 Y

(2, ) )
8 B 4

TV Br j=2,3

w w
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g, s’
[}
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Now

(A2)
1
(3,5) s, )
1 . B
B, - (m¥ B, i=3,4
B3 v
4,)) (3)
B, (4,) 81' )
B, - mY B, i=1,4
P3 Y2

The next step is to determine the derivatives of the displacement compon-
ents with respect to the coordinates £ and n which are defined so that

£ = -1 on side 4 and +1 for aide 2 and n = =1 on side 1 and +1 for side 3.
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That is,

]
i

= '<’(l)> {xi}
' (A3)
<¢l> {yi}

«
]

where

<os o ci/ag-ma-1), 1/40490-7),

1/4(1+€)(1+7), 1/4(1-E)(1+T)) >

where xi, yi are the x and y coordinates of the four corners. First the
derivatives are determined with respect to a parameter representing the

distance along the side of the element, see Figure A3.

aw/or @ afl,1)
2
\ e et -—y,v

- \ulj

\

(1,1)
b

Fig. A3 Inplane Rotation of x-Coordinate Line 1

For example, for line 1 at corner 1

(1
g% . al(l. 1) sin o Bz(l.l) cosa
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With the notations

0
}

= cos (qi) and
o (A5)

sai = sin (o'i) at corner 1:

ar(V

£ o= U, -x))/c,, and consequently (A6)
(1) 2(x., - x,)

ew 2 1 (1, 1) (1, 1)

EE- = __c:;_._ sal al + cal ﬁz ] (A7)

The derivatives with respect to n are determined in the same way (See

Figure A4).

3w/3s

Fig. A4 1Inplene Rotation of y-Coordinate Line

) ‘
dw' " _ (4,1) (4,1) .
Te c B - ‘04 e, (A9)
M 2y, -y, | |
awlll . 2yg-m (4,1) _ (4,1)
Y —_ (ca4 B la4 8, ) (A10) {
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Corresponding derivatives at the remaining three corners are then deter-

mined 1in the same way.

The field of lateral displacement is determined from the lateral displace-
i ments and their derivatives with respect to the Cartesian coordinates x

~and y at the corner nodes. The chain rule of differentiation yields

W, x és' En W, w,
= :x ZL Uoom ¢ (AL1)
w, y éy by W.n W,rl

The transformation matrix J* is obtained as the transpose of the inverse of

and
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The derivatives of x and y with respect to § and n are readily obtained
from Eqs. (A3). The freedoms of the flat element (in addition to w and
its derivatives) are u and v displacements at the corner nodes, the cor-
rection to the inplane tangential displacements at nodes 5, 6, 7, and 8,
and the corner node freedoms corresponding to the boundary line rotations

about the normal to the plate (see Figure Al).

The displacement field that matches these freedoms will now be defined.
A bilinear field is used to match the corner displacement. The biquad-
ratic displacement field has zero displacements at corner nodes. It
represents an addition to the tangential displacements at the midsiue
nodes as determined from the bilinear field. The parameters yu and yv
are the corrections to the displacement field that are necessary in order
that the inplane rotations will match the rotations of boundary lines at

the corners (as determined by 83, see Eqs. A2).

Hence, we have

= <¢(1)> {ui} + <‘(Z)> {tiu} + <¢‘(13)> [‘Y‘;] + <¢(v?;)> {Yiv]

[
[}

<
A

= <¢(1)> {vi] + <¢(Z)> [tiv} + < ai3)> {'Yiv} + < Qf:’)) {Yiu]
i=12,3,4 (Al5)

Notice that each of the four components of the biquadratic field corres-
ponds to displacements parallel to one of the sides. Likewise, the con-
ponents of the dicubic field include only displacements in a direction

normal to one of the sides. Consequently

. A=7
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{Al6)

-t

v
t
{ti } 3 ga3 ' "4 ca4>

<‘t 8 ’ t, ¢ ’
1 o 2 o,
The form of the components in the bilinear field are given by <¢(U> in
Eqs. A3. That is,
< 9¥5= cv20-650-1), 12048)-10), 1/20-81)0+0), 1/20-90-10) >
(A17)

and

<o = <116 c, 4 (2-38+€%) (1-n-n24n?), 1/16 c,, 2+38-E2) (1-n-124n?),
1116 c_, (2438-82) (-1-me1°40°),1 /06 ¢ (2-38+€7) (-1-menen)>

<”$,)> = <-1/16 sa4(2-3§+§3) (1-n-n2+13), -1/16 saz(z+3§-§3)(l-n-n2+n3),

2

-1/16 5, (2+38-£°) -1-047%4+7%), -1/16 504(2-3§+§3) (-1-n+r2413) >

<oPs= <116 ¢ | -greteed) @-anend) 116 ¢ (-1-greleed) 2-anen),
16 (-1-g+e2+e3) (243m-13), 1/16 ca3(l-§-§2+§3) (2+37-1°) >
2

+e3) (2+31-1%)>

<) >= <1/16s | (1-greP4e?) 2430-13), 1/16 5, (1-t-e ;
A18)

Differentiating Eq. (Al5) with respect to the normalized coordinate yields

in matrix notation

B B ~ B ~ .
u, gi . -TVV 0 TuO’l 0 0
u
Yo “T o, 0 u, L ) [0 % |
= + 2 1 + v
v, e 0 --'I‘w A Tv"l t;’ 0 1 Y; ‘
- ~ - - (Al19)
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1/2

1/2

-1

-1

{A20)
If the operations indicated by the second term on the right side of Eq.
(A19) are carried out, this term is found to be identically equal to
zero at all corner nodes. Consequently, the derivatives with respect to

£ and n of the displacement field corresponding to the midnode displace-

ments will vanish and need not be given any further consideration.

Next the boundary line normal rotations corresponding to the linear
polynomial. For this purpose the inplane displacements normal to the
boundary are differentiated with respect to the distance along the ele-

ment side.

From the figure, it is observed that

- - L - 2 3
r £(x, xl)/Z , 35 ° <, -%,) 3¢ on boundary 1
(A2])
s = Ty, ~y,)/2 2 - 2 2 on boundary 4
4 1 ' os (Y4 'Yls on
Also,
v =vec +us on boundary 1
oLy o
(A22)
u = vs uc on boundary 4
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From comparison of the left-hand side of Eq. (A25) to similar terms in
Eq. (A19) the expression for the correction terms yu and yv are deter-

‘mined, yielding

u ’ (Jn i)

Y } T T u, T 0 -8 1
i uu vu i . Bu 3 (A30)
v (k, i)

Yi I Tuv Tw Vi 0 Tav B3 j

where j =1, ifi=lor 2, j=3ifi=30r 4, andk=4ifi=lor 4, k=2 if

i=2o0r 3.
Tyu* Tov® Ty Tpy a7 defined in Eqs. (A20), (1\226), (A27); the Bgl..)) i:fe .
defined in Eqs. (A2). Notice also that u, -8 3( or 4,1 and Vi, =By or 3.1}
i
t -t 0 O—| -t 0 0 t ]
al al 04 0'4
o -td 0 0 0 -t t 0
1 1 @2 a2
- T =1/2
Tuv 1/2 0 0 -t t ' Tva 0 -t t 0
a3 o %2 2
0 0 -t ta -t 0 0 t
i o3 3 | % ¥4 _]
(A31)

By substituting Eq. (A30) into Eq. (A15), the correction terms Y" and yv
are eliminated and the expression for u and v is obtained in terms of

the selected flat plste freedoms.
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, 2
r s fu)rT v )T (v )
v uv * i v i v r;
+ oo (T (e T (3T (v T)
v > uv L1 yv t i Bv T,
The derivatives of u and v with respect to x and y are needed at the
: integration points inside the element. The chain rule of differentia-
tion yields
u, u,
x 3% 0 3
u, ) u,
y 1 (A33)
V, vy
x 0 J* 14
Viy Vi
where J* is defined by Eq. (Al4).
Hence,
<> {r,} - <o e by}
J =(1/K) (1) . . ! (A34)
-<§ >’,n{xi] < >’§{xi]




where

R L A LI A P )

1 1
o> b o> k) (A35)

The values of the shape functions Gm. 0(2). and ¢‘3) at the eight nodes

(four corners and four mid nodes) are shown in Table Al.




Table Al

SHAPE FUNCTIONS AND DERIVATIVES EVALUATED
AT NODES AND MID NODES

a) Bilinear Functions

<¢“)>'§ = <1/4(1-1), 140-T), 1/4047), -1/40+M) >
.<¢m>.“ :  <-1/4(1-€), -1/4(1+€), 1/4(1+6), 1/4(1-8) >
Node € o o\'e o
4 - 3,000 -1/2,1/2,0,0 -1/2,0,0,1/2
1 -1 0,1,0,0 -1/2,1/2,0,0 0,-1/2,1/2.0
1 1 0,010 0,0,1/2,-1/2 0,-1/2,1/2,0
1 1 0,0,0,1 0,0,1/2,-1/2 -1/2,0,0,1/2

0 -1 1/2,1/2,0,0 -1/2,1/2,0,0

1 0 0,1/2,1/2,0 -1/4,1/4,1/4, -1/4

-1/4, -1/4,1/4,1/4

0, -1/2,1/2,0

7 0 1 0,0,1/2,1/2 0,0,1/2-1/2 -1/4, -1/4,1/4,1/4

8 -1 0 1/2,0,0,1/2 -1/4,1/4,1/4,-1/4 -1/2,0,0,1/2
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) Node

F—-—-?s..» ™

—~
un

<¢‘2)>. £

<¢(Z)>. 1

-1

<-€(1-1), 1/20-T8), -£a+1), -1/20-10) >

<1/20-€3), -Q+8)n, 1/20-85), -(1-8) 1 >

b) Bigquadratic Function

(2 g(2)

' 8
0,0,0,0 2,0,0,0
0,0,0,0 -2,0,0,0
0,0,0,0 0,0,-2,0
0,0,0,0 0,0,2,0
1,0,0,0 0,0,0,0
0,1,0,0 -1,1/2, -1, -1/2
0,0,1,0 0,0,0,0
0,0,0,1 1,1/2,1, -1/2

0,0,0,2
0,2,0,0
0,-2,0,0
0,0,0,-2
-1/2,1,1/2,1

0,0,0,0

-1/2,-1,1/2, -1

0,0,0,0




(3)
<¢‘l >. €

< ’?)’. 1

< Q‘(,3)> €

<9

<80)> ¢

(3)
<Ouv > 1

<>,

<!&) > a

c) Bicubic Functions

<1/16 ca4(-3+3§2)(1-1|-1]2+1\3). 1/16 caz(s-ssz)u-n-fﬂﬁ).

1/16 ¢ (3-385(-1-1418+ 1), 116 ¢ (-3438%)(-1-nerlen’) >

<1/16 <, (2-3§+§3)(-1-zn+3n2). 1/16 €y (2+3§-;3)(-1-2n+3n2),
4 2

1/16 <, (Z+3§-§3)(-1+zn+31\2). 1/16 <, (2-3§+g3)(-1+zn+3n2)>
2 4

<116 ¢ (-1-26+3€)(2-30+1), 1/16 c_ (-1+26+3€%)(2-3747))
1 1

1/16 cas(-l+2!+3§2)(2+31\-1\3). V16 c (-1-zg+3;z)(z+3n-ﬂ3) >
: 3

<1/16 ¢ (-E-E%+8)(-3431%), 1/16 ¢ (~1-6+£248%)(-3437%),
1 1

1/16 ¢ (-1-8+8242%)(3-37%), 1/16 ¢ (1-6-82+23)(3-31%) >
a3 o3

<1168 (-3+383)(1-1-1+1%), -1/16 8 (3-3€3)(1-0-F+T),
04 az

1116 5 (3-38)(-1-nenZend), -1/16 s (3E31mene )
2 4

U168 (2-36+8%)(-1-21370), -1/16 »__ (2436-87)(-1-2137),
4 2

Vi s, (2+38-2)(-1421+31%), -1/16 . (2-38:€3)(-1427+37%)>
2

<itb s (-1-2e+38%)(2-3147°), 1/16 . (-142€+3€5) 2374 7)),
1 )

1/16 sa3 (-l+2§+3§z)(2+3n-n3). 1/16 ., (-1-2§+3§Z)(z+3n.n3)>
3

<16 s, O-g-L)-343, 116 8, (Agsg®eg) (30310,

16 s_ (-1-8+€24€)(3-310), 1/16 8 (1-€-g2+€%)( 3-31%)5
a3 o3
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The changes of curvature in the element are determined from the lateral dis-

placements and the rotation components L and w.y as given by Eq. (All).

fhe cubic interpolating functions defined for the membrane element could be

sused if the analysis were restricted to rectangular elements. However, for

the bending part the isoparametric mapping to the £,n coordinates produces

strain energy under rigid body displacement 1f the element is nonrectangular.

Therefore the Taylor series approach was used. The two~dimensional Taylor

series includes all terms through the third-~order and two fourth-order 1

terms wl3x3y and ublxya. A penalty function is aﬁplied to the freedoms

Vi3 and Wape This constraint is found to reduce significantly the effect

of rotational nonconformity.







